Step |
Hyp |
Ref |
Expression |
1 |
|
df-iis |
⊢ 𝐼 = ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,] 1 ) ) |
2 |
|
cnnrg |
⊢ ℂfld ∈ NrmRing |
3 |
|
nrgtrg |
⊢ ( ℂfld ∈ NrmRing → ℂfld ∈ TopRing ) |
4 |
|
eqid |
⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) |
5 |
4
|
trgtmd |
⊢ ( ℂfld ∈ TopRing → ( mulGrp ‘ ℂfld ) ∈ TopMnd ) |
6 |
2 3 5
|
mp2b |
⊢ ( mulGrp ‘ ℂfld ) ∈ TopMnd |
7 |
|
unitsscn |
⊢ ( 0 [,] 1 ) ⊆ ℂ |
8 |
|
1elunit |
⊢ 1 ∈ ( 0 [,] 1 ) |
9 |
|
iimulcl |
⊢ ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) → ( 𝑥 · 𝑦 ) ∈ ( 0 [,] 1 ) ) |
10 |
9
|
rgen2 |
⊢ ∀ 𝑥 ∈ ( 0 [,] 1 ) ∀ 𝑦 ∈ ( 0 [,] 1 ) ( 𝑥 · 𝑦 ) ∈ ( 0 [,] 1 ) |
11 |
|
nrgring |
⊢ ( ℂfld ∈ NrmRing → ℂfld ∈ Ring ) |
12 |
4
|
ringmgp |
⊢ ( ℂfld ∈ Ring → ( mulGrp ‘ ℂfld ) ∈ Mnd ) |
13 |
2 11 12
|
mp2b |
⊢ ( mulGrp ‘ ℂfld ) ∈ Mnd |
14 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
15 |
4 14
|
mgpbas |
⊢ ℂ = ( Base ‘ ( mulGrp ‘ ℂfld ) ) |
16 |
|
cnfld1 |
⊢ 1 = ( 1r ‘ ℂfld ) |
17 |
4 16
|
ringidval |
⊢ 1 = ( 0g ‘ ( mulGrp ‘ ℂfld ) ) |
18 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
19 |
4 18
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ ℂfld ) ) |
20 |
15 17 19
|
issubm |
⊢ ( ( mulGrp ‘ ℂfld ) ∈ Mnd → ( ( 0 [,] 1 ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ↔ ( ( 0 [,] 1 ) ⊆ ℂ ∧ 1 ∈ ( 0 [,] 1 ) ∧ ∀ 𝑥 ∈ ( 0 [,] 1 ) ∀ 𝑦 ∈ ( 0 [,] 1 ) ( 𝑥 · 𝑦 ) ∈ ( 0 [,] 1 ) ) ) ) |
21 |
13 20
|
ax-mp |
⊢ ( ( 0 [,] 1 ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ↔ ( ( 0 [,] 1 ) ⊆ ℂ ∧ 1 ∈ ( 0 [,] 1 ) ∧ ∀ 𝑥 ∈ ( 0 [,] 1 ) ∀ 𝑦 ∈ ( 0 [,] 1 ) ( 𝑥 · 𝑦 ) ∈ ( 0 [,] 1 ) ) ) |
22 |
7 8 10 21
|
mpbir3an |
⊢ ( 0 [,] 1 ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) |
23 |
1
|
submtmd |
⊢ ( ( ( mulGrp ‘ ℂfld ) ∈ TopMnd ∧ ( 0 [,] 1 ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ) → 𝐼 ∈ TopMnd ) |
24 |
6 22 23
|
mp2an |
⊢ 𝐼 ∈ TopMnd |