Step |
Hyp |
Ref |
Expression |
1 |
|
cnxmet |
⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) |
2 |
|
unitssre |
⊢ ( 0 [,] 1 ) ⊆ ℝ |
3 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
4 |
2 3
|
sstri |
⊢ ( 0 [,] 1 ) ⊆ ℂ |
5 |
|
xmetres2 |
⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ ( 0 [,] 1 ) ⊆ ℂ ) → ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ∈ ( ∞Met ‘ ( 0 [,] 1 ) ) ) |
6 |
1 4 5
|
mp2an |
⊢ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ∈ ( ∞Met ‘ ( 0 [,] 1 ) ) |
7 |
|
df-ii |
⊢ II = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) |
8 |
7
|
mopntopon |
⊢ ( ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ∈ ( ∞Met ‘ ( 0 [,] 1 ) ) → II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ) |
9 |
6 8
|
ax-mp |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |