Description: The base set of the unit interval. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 15-Jan-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | iiuni | ⊢ ( 0 [,] 1 ) = ∪ II |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iitopon | ⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) | |
2 | 1 | toponunii | ⊢ ( 0 [,] 1 ) = ∪ II |