Metamath Proof Explorer


Theorem iiuni

Description: The base set of the unit interval. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 15-Jan-2014)

Ref Expression
Assertion iiuni ( 0 [,] 1 ) = II

Proof

Step Hyp Ref Expression
1 iitopon II ∈ ( TopOn ‘ ( 0 [,] 1 ) )
2 1 toponunii ( 0 [,] 1 ) = II