Metamath Proof Explorer


Theorem im2anan9r

Description: Deduction joining nested implications to form implication of conjunctions. (Contributed by NM, 29-Feb-1996)

Ref Expression
Hypotheses im2an9.1 ( 𝜑 → ( 𝜓𝜒 ) )
im2an9.2 ( 𝜃 → ( 𝜏𝜂 ) )
Assertion im2anan9r ( ( 𝜃𝜑 ) → ( ( 𝜓𝜏 ) → ( 𝜒𝜂 ) ) )

Proof

Step Hyp Ref Expression
1 im2an9.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 im2an9.2 ( 𝜃 → ( 𝜏𝜂 ) )
3 1 2 im2anan9 ( ( 𝜑𝜃 ) → ( ( 𝜓𝜏 ) → ( 𝜒𝜂 ) ) )
4 3 ancoms ( ( 𝜃𝜑 ) → ( ( 𝜓𝜏 ) → ( 𝜒𝜂 ) ) )