Step |
Hyp |
Ref |
Expression |
1 |
|
df-ima |
⊢ ( 𝐹 “ 𝐴 ) = ran ( 𝐹 ↾ 𝐴 ) |
2 |
1
|
oveq2i |
⊢ ( 𝐾 ↾t ( 𝐹 “ 𝐴 ) ) = ( 𝐾 ↾t ran ( 𝐹 ↾ 𝐴 ) ) |
3 |
|
simpr |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐽 ↾t 𝐴 ) ∈ Comp ) → ( 𝐽 ↾t 𝐴 ) ∈ Comp ) |
4 |
|
simpl |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐽 ↾t 𝐴 ) ∈ Comp ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
5 |
|
inss2 |
⊢ ( 𝐴 ∩ ∪ 𝐽 ) ⊆ ∪ 𝐽 |
6 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
7 |
6
|
cnrest |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐴 ∩ ∪ 𝐽 ) ⊆ ∪ 𝐽 ) → ( 𝐹 ↾ ( 𝐴 ∩ ∪ 𝐽 ) ) ∈ ( ( 𝐽 ↾t ( 𝐴 ∩ ∪ 𝐽 ) ) Cn 𝐾 ) ) |
8 |
4 5 7
|
sylancl |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐽 ↾t 𝐴 ) ∈ Comp ) → ( 𝐹 ↾ ( 𝐴 ∩ ∪ 𝐽 ) ) ∈ ( ( 𝐽 ↾t ( 𝐴 ∩ ∪ 𝐽 ) ) Cn 𝐾 ) ) |
9 |
|
resdmres |
⊢ ( 𝐹 ↾ dom ( 𝐹 ↾ 𝐴 ) ) = ( 𝐹 ↾ 𝐴 ) |
10 |
|
dmres |
⊢ dom ( 𝐹 ↾ 𝐴 ) = ( 𝐴 ∩ dom 𝐹 ) |
11 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
12 |
6 11
|
cnf |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
13 |
|
fdm |
⊢ ( 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 → dom 𝐹 = ∪ 𝐽 ) |
14 |
4 12 13
|
3syl |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐽 ↾t 𝐴 ) ∈ Comp ) → dom 𝐹 = ∪ 𝐽 ) |
15 |
14
|
ineq2d |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐽 ↾t 𝐴 ) ∈ Comp ) → ( 𝐴 ∩ dom 𝐹 ) = ( 𝐴 ∩ ∪ 𝐽 ) ) |
16 |
10 15
|
syl5eq |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐽 ↾t 𝐴 ) ∈ Comp ) → dom ( 𝐹 ↾ 𝐴 ) = ( 𝐴 ∩ ∪ 𝐽 ) ) |
17 |
16
|
reseq2d |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐽 ↾t 𝐴 ) ∈ Comp ) → ( 𝐹 ↾ dom ( 𝐹 ↾ 𝐴 ) ) = ( 𝐹 ↾ ( 𝐴 ∩ ∪ 𝐽 ) ) ) |
18 |
9 17
|
eqtr3id |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐽 ↾t 𝐴 ) ∈ Comp ) → ( 𝐹 ↾ 𝐴 ) = ( 𝐹 ↾ ( 𝐴 ∩ ∪ 𝐽 ) ) ) |
19 |
|
cmptop |
⊢ ( ( 𝐽 ↾t 𝐴 ) ∈ Comp → ( 𝐽 ↾t 𝐴 ) ∈ Top ) |
20 |
19
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐽 ↾t 𝐴 ) ∈ Comp ) → ( 𝐽 ↾t 𝐴 ) ∈ Top ) |
21 |
|
restrcl |
⊢ ( ( 𝐽 ↾t 𝐴 ) ∈ Top → ( 𝐽 ∈ V ∧ 𝐴 ∈ V ) ) |
22 |
6
|
restin |
⊢ ( ( 𝐽 ∈ V ∧ 𝐴 ∈ V ) → ( 𝐽 ↾t 𝐴 ) = ( 𝐽 ↾t ( 𝐴 ∩ ∪ 𝐽 ) ) ) |
23 |
20 21 22
|
3syl |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐽 ↾t 𝐴 ) ∈ Comp ) → ( 𝐽 ↾t 𝐴 ) = ( 𝐽 ↾t ( 𝐴 ∩ ∪ 𝐽 ) ) ) |
24 |
23
|
oveq1d |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐽 ↾t 𝐴 ) ∈ Comp ) → ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) = ( ( 𝐽 ↾t ( 𝐴 ∩ ∪ 𝐽 ) ) Cn 𝐾 ) ) |
25 |
8 18 24
|
3eltr4d |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐽 ↾t 𝐴 ) ∈ Comp ) → ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) ) |
26 |
|
rncmp |
⊢ ( ( ( 𝐽 ↾t 𝐴 ) ∈ Comp ∧ ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) ) → ( 𝐾 ↾t ran ( 𝐹 ↾ 𝐴 ) ) ∈ Comp ) |
27 |
3 25 26
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐽 ↾t 𝐴 ) ∈ Comp ) → ( 𝐾 ↾t ran ( 𝐹 ↾ 𝐴 ) ) ∈ Comp ) |
28 |
2 27
|
eqeltrid |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐽 ↾t 𝐴 ) ∈ Comp ) → ( 𝐾 ↾t ( 𝐹 “ 𝐴 ) ) ∈ Comp ) |