| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ ( 𝐵 “ 𝐶 ) 𝑦 𝐴 𝑥 ↔ ∃ 𝑦 ( 𝑦 ∈ ( 𝐵 “ 𝐶 ) ∧ 𝑦 𝐴 𝑥 ) ) |
| 2 |
|
vex |
⊢ 𝑥 ∈ V |
| 3 |
2
|
elima |
⊢ ( 𝑥 ∈ ( 𝐴 “ ( 𝐵 “ 𝐶 ) ) ↔ ∃ 𝑦 ∈ ( 𝐵 “ 𝐶 ) 𝑦 𝐴 𝑥 ) |
| 4 |
|
vex |
⊢ 𝑧 ∈ V |
| 5 |
4 2
|
brco |
⊢ ( 𝑧 ( 𝐴 ∘ 𝐵 ) 𝑥 ↔ ∃ 𝑦 ( 𝑧 𝐵 𝑦 ∧ 𝑦 𝐴 𝑥 ) ) |
| 6 |
5
|
rexbii |
⊢ ( ∃ 𝑧 ∈ 𝐶 𝑧 ( 𝐴 ∘ 𝐵 ) 𝑥 ↔ ∃ 𝑧 ∈ 𝐶 ∃ 𝑦 ( 𝑧 𝐵 𝑦 ∧ 𝑦 𝐴 𝑥 ) ) |
| 7 |
|
rexcom4 |
⊢ ( ∃ 𝑧 ∈ 𝐶 ∃ 𝑦 ( 𝑧 𝐵 𝑦 ∧ 𝑦 𝐴 𝑥 ) ↔ ∃ 𝑦 ∃ 𝑧 ∈ 𝐶 ( 𝑧 𝐵 𝑦 ∧ 𝑦 𝐴 𝑥 ) ) |
| 8 |
|
r19.41v |
⊢ ( ∃ 𝑧 ∈ 𝐶 ( 𝑧 𝐵 𝑦 ∧ 𝑦 𝐴 𝑥 ) ↔ ( ∃ 𝑧 ∈ 𝐶 𝑧 𝐵 𝑦 ∧ 𝑦 𝐴 𝑥 ) ) |
| 9 |
8
|
exbii |
⊢ ( ∃ 𝑦 ∃ 𝑧 ∈ 𝐶 ( 𝑧 𝐵 𝑦 ∧ 𝑦 𝐴 𝑥 ) ↔ ∃ 𝑦 ( ∃ 𝑧 ∈ 𝐶 𝑧 𝐵 𝑦 ∧ 𝑦 𝐴 𝑥 ) ) |
| 10 |
6 7 9
|
3bitri |
⊢ ( ∃ 𝑧 ∈ 𝐶 𝑧 ( 𝐴 ∘ 𝐵 ) 𝑥 ↔ ∃ 𝑦 ( ∃ 𝑧 ∈ 𝐶 𝑧 𝐵 𝑦 ∧ 𝑦 𝐴 𝑥 ) ) |
| 11 |
2
|
elima |
⊢ ( 𝑥 ∈ ( ( 𝐴 ∘ 𝐵 ) “ 𝐶 ) ↔ ∃ 𝑧 ∈ 𝐶 𝑧 ( 𝐴 ∘ 𝐵 ) 𝑥 ) |
| 12 |
|
vex |
⊢ 𝑦 ∈ V |
| 13 |
12
|
elima |
⊢ ( 𝑦 ∈ ( 𝐵 “ 𝐶 ) ↔ ∃ 𝑧 ∈ 𝐶 𝑧 𝐵 𝑦 ) |
| 14 |
13
|
anbi1i |
⊢ ( ( 𝑦 ∈ ( 𝐵 “ 𝐶 ) ∧ 𝑦 𝐴 𝑥 ) ↔ ( ∃ 𝑧 ∈ 𝐶 𝑧 𝐵 𝑦 ∧ 𝑦 𝐴 𝑥 ) ) |
| 15 |
14
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑦 ∈ ( 𝐵 “ 𝐶 ) ∧ 𝑦 𝐴 𝑥 ) ↔ ∃ 𝑦 ( ∃ 𝑧 ∈ 𝐶 𝑧 𝐵 𝑦 ∧ 𝑦 𝐴 𝑥 ) ) |
| 16 |
10 11 15
|
3bitr4i |
⊢ ( 𝑥 ∈ ( ( 𝐴 ∘ 𝐵 ) “ 𝐶 ) ↔ ∃ 𝑦 ( 𝑦 ∈ ( 𝐵 “ 𝐶 ) ∧ 𝑦 𝐴 𝑥 ) ) |
| 17 |
1 3 16
|
3bitr4ri |
⊢ ( 𝑥 ∈ ( ( 𝐴 ∘ 𝐵 ) “ 𝐶 ) ↔ 𝑥 ∈ ( 𝐴 “ ( 𝐵 “ 𝐶 ) ) ) |
| 18 |
17
|
eqriv |
⊢ ( ( 𝐴 ∘ 𝐵 ) “ 𝐶 ) = ( 𝐴 “ ( 𝐵 “ 𝐶 ) ) |