Step |
Hyp |
Ref |
Expression |
1 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ ( 𝐵 “ 𝐶 ) 𝑦 𝐴 𝑥 ↔ ∃ 𝑦 ( 𝑦 ∈ ( 𝐵 “ 𝐶 ) ∧ 𝑦 𝐴 𝑥 ) ) |
2 |
|
vex |
⊢ 𝑥 ∈ V |
3 |
2
|
elima |
⊢ ( 𝑥 ∈ ( 𝐴 “ ( 𝐵 “ 𝐶 ) ) ↔ ∃ 𝑦 ∈ ( 𝐵 “ 𝐶 ) 𝑦 𝐴 𝑥 ) |
4 |
|
rexcom4 |
⊢ ( ∃ 𝑧 ∈ 𝐶 ∃ 𝑦 ( 𝑧 𝐵 𝑦 ∧ 𝑦 𝐴 𝑥 ) ↔ ∃ 𝑦 ∃ 𝑧 ∈ 𝐶 ( 𝑧 𝐵 𝑦 ∧ 𝑦 𝐴 𝑥 ) ) |
5 |
|
r19.41v |
⊢ ( ∃ 𝑧 ∈ 𝐶 ( 𝑧 𝐵 𝑦 ∧ 𝑦 𝐴 𝑥 ) ↔ ( ∃ 𝑧 ∈ 𝐶 𝑧 𝐵 𝑦 ∧ 𝑦 𝐴 𝑥 ) ) |
6 |
5
|
exbii |
⊢ ( ∃ 𝑦 ∃ 𝑧 ∈ 𝐶 ( 𝑧 𝐵 𝑦 ∧ 𝑦 𝐴 𝑥 ) ↔ ∃ 𝑦 ( ∃ 𝑧 ∈ 𝐶 𝑧 𝐵 𝑦 ∧ 𝑦 𝐴 𝑥 ) ) |
7 |
4 6
|
bitri |
⊢ ( ∃ 𝑧 ∈ 𝐶 ∃ 𝑦 ( 𝑧 𝐵 𝑦 ∧ 𝑦 𝐴 𝑥 ) ↔ ∃ 𝑦 ( ∃ 𝑧 ∈ 𝐶 𝑧 𝐵 𝑦 ∧ 𝑦 𝐴 𝑥 ) ) |
8 |
2
|
elima |
⊢ ( 𝑥 ∈ ( ( 𝐴 ∘ 𝐵 ) “ 𝐶 ) ↔ ∃ 𝑧 ∈ 𝐶 𝑧 ( 𝐴 ∘ 𝐵 ) 𝑥 ) |
9 |
|
vex |
⊢ 𝑧 ∈ V |
10 |
9 2
|
brco |
⊢ ( 𝑧 ( 𝐴 ∘ 𝐵 ) 𝑥 ↔ ∃ 𝑦 ( 𝑧 𝐵 𝑦 ∧ 𝑦 𝐴 𝑥 ) ) |
11 |
10
|
rexbii |
⊢ ( ∃ 𝑧 ∈ 𝐶 𝑧 ( 𝐴 ∘ 𝐵 ) 𝑥 ↔ ∃ 𝑧 ∈ 𝐶 ∃ 𝑦 ( 𝑧 𝐵 𝑦 ∧ 𝑦 𝐴 𝑥 ) ) |
12 |
8 11
|
bitri |
⊢ ( 𝑥 ∈ ( ( 𝐴 ∘ 𝐵 ) “ 𝐶 ) ↔ ∃ 𝑧 ∈ 𝐶 ∃ 𝑦 ( 𝑧 𝐵 𝑦 ∧ 𝑦 𝐴 𝑥 ) ) |
13 |
|
vex |
⊢ 𝑦 ∈ V |
14 |
13
|
elima |
⊢ ( 𝑦 ∈ ( 𝐵 “ 𝐶 ) ↔ ∃ 𝑧 ∈ 𝐶 𝑧 𝐵 𝑦 ) |
15 |
14
|
anbi1i |
⊢ ( ( 𝑦 ∈ ( 𝐵 “ 𝐶 ) ∧ 𝑦 𝐴 𝑥 ) ↔ ( ∃ 𝑧 ∈ 𝐶 𝑧 𝐵 𝑦 ∧ 𝑦 𝐴 𝑥 ) ) |
16 |
15
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑦 ∈ ( 𝐵 “ 𝐶 ) ∧ 𝑦 𝐴 𝑥 ) ↔ ∃ 𝑦 ( ∃ 𝑧 ∈ 𝐶 𝑧 𝐵 𝑦 ∧ 𝑦 𝐴 𝑥 ) ) |
17 |
7 12 16
|
3bitr4i |
⊢ ( 𝑥 ∈ ( ( 𝐴 ∘ 𝐵 ) “ 𝐶 ) ↔ ∃ 𝑦 ( 𝑦 ∈ ( 𝐵 “ 𝐶 ) ∧ 𝑦 𝐴 𝑥 ) ) |
18 |
1 3 17
|
3bitr4ri |
⊢ ( 𝑥 ∈ ( ( 𝐴 ∘ 𝐵 ) “ 𝐶 ) ↔ 𝑥 ∈ ( 𝐴 “ ( 𝐵 “ 𝐶 ) ) ) |
19 |
18
|
eqriv |
⊢ ( ( 𝐴 ∘ 𝐵 ) “ 𝐶 ) = ( 𝐴 “ ( 𝐵 “ 𝐶 ) ) |