Metamath Proof Explorer


Theorem imaco

Description: Image of the composition of two classes. (Contributed by Jason Orendorff, 12-Dec-2006) (Proof shortened by Wolf Lammen, 16-May-2025)

Ref Expression
Assertion imaco ( ( 𝐴𝐵 ) “ 𝐶 ) = ( 𝐴 “ ( 𝐵𝐶 ) )

Proof

Step Hyp Ref Expression
1 df-rex ( ∃ 𝑦 ∈ ( 𝐵𝐶 ) 𝑦 𝐴 𝑥 ↔ ∃ 𝑦 ( 𝑦 ∈ ( 𝐵𝐶 ) ∧ 𝑦 𝐴 𝑥 ) )
2 vex 𝑥 ∈ V
3 2 elima ( 𝑥 ∈ ( 𝐴 “ ( 𝐵𝐶 ) ) ↔ ∃ 𝑦 ∈ ( 𝐵𝐶 ) 𝑦 𝐴 𝑥 )
4 vex 𝑧 ∈ V
5 4 2 brco ( 𝑧 ( 𝐴𝐵 ) 𝑥 ↔ ∃ 𝑦 ( 𝑧 𝐵 𝑦𝑦 𝐴 𝑥 ) )
6 5 rexbii ( ∃ 𝑧𝐶 𝑧 ( 𝐴𝐵 ) 𝑥 ↔ ∃ 𝑧𝐶𝑦 ( 𝑧 𝐵 𝑦𝑦 𝐴 𝑥 ) )
7 rexcom4 ( ∃ 𝑧𝐶𝑦 ( 𝑧 𝐵 𝑦𝑦 𝐴 𝑥 ) ↔ ∃ 𝑦𝑧𝐶 ( 𝑧 𝐵 𝑦𝑦 𝐴 𝑥 ) )
8 r19.41v ( ∃ 𝑧𝐶 ( 𝑧 𝐵 𝑦𝑦 𝐴 𝑥 ) ↔ ( ∃ 𝑧𝐶 𝑧 𝐵 𝑦𝑦 𝐴 𝑥 ) )
9 8 exbii ( ∃ 𝑦𝑧𝐶 ( 𝑧 𝐵 𝑦𝑦 𝐴 𝑥 ) ↔ ∃ 𝑦 ( ∃ 𝑧𝐶 𝑧 𝐵 𝑦𝑦 𝐴 𝑥 ) )
10 6 7 9 3bitri ( ∃ 𝑧𝐶 𝑧 ( 𝐴𝐵 ) 𝑥 ↔ ∃ 𝑦 ( ∃ 𝑧𝐶 𝑧 𝐵 𝑦𝑦 𝐴 𝑥 ) )
11 2 elima ( 𝑥 ∈ ( ( 𝐴𝐵 ) “ 𝐶 ) ↔ ∃ 𝑧𝐶 𝑧 ( 𝐴𝐵 ) 𝑥 )
12 vex 𝑦 ∈ V
13 12 elima ( 𝑦 ∈ ( 𝐵𝐶 ) ↔ ∃ 𝑧𝐶 𝑧 𝐵 𝑦 )
14 13 anbi1i ( ( 𝑦 ∈ ( 𝐵𝐶 ) ∧ 𝑦 𝐴 𝑥 ) ↔ ( ∃ 𝑧𝐶 𝑧 𝐵 𝑦𝑦 𝐴 𝑥 ) )
15 14 exbii ( ∃ 𝑦 ( 𝑦 ∈ ( 𝐵𝐶 ) ∧ 𝑦 𝐴 𝑥 ) ↔ ∃ 𝑦 ( ∃ 𝑧𝐶 𝑧 𝐵 𝑦𝑦 𝐴 𝑥 ) )
16 10 11 15 3bitr4i ( 𝑥 ∈ ( ( 𝐴𝐵 ) “ 𝐶 ) ↔ ∃ 𝑦 ( 𝑦 ∈ ( 𝐵𝐶 ) ∧ 𝑦 𝐴 𝑥 ) )
17 1 3 16 3bitr4ri ( 𝑥 ∈ ( ( 𝐴𝐵 ) “ 𝐶 ) ↔ 𝑥 ∈ ( 𝐴 “ ( 𝐵𝐶 ) ) )
18 17 eqriv ( ( 𝐴𝐵 ) “ 𝐶 ) = ( 𝐴 “ ( 𝐵𝐶 ) )