Step |
Hyp |
Ref |
Expression |
1 |
|
suppco |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) = ( ◡ 𝐺 “ ( 𝐹 supp 𝑍 ) ) ) |
2 |
1
|
imaeq2d |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → ( 𝐺 “ ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) ) = ( 𝐺 “ ( ◡ 𝐺 “ ( 𝐹 supp 𝑍 ) ) ) ) |
3 |
|
funforn |
⊢ ( Fun 𝐺 ↔ 𝐺 : dom 𝐺 –onto→ ran 𝐺 ) |
4 |
|
foimacnv |
⊢ ( ( 𝐺 : dom 𝐺 –onto→ ran 𝐺 ∧ ( 𝐹 supp 𝑍 ) ⊆ ran 𝐺 ) → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝐹 supp 𝑍 ) ) ) = ( 𝐹 supp 𝑍 ) ) |
5 |
3 4
|
sylanb |
⊢ ( ( Fun 𝐺 ∧ ( 𝐹 supp 𝑍 ) ⊆ ran 𝐺 ) → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝐹 supp 𝑍 ) ) ) = ( 𝐹 supp 𝑍 ) ) |
6 |
2 5
|
sylan9eq |
⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) ∧ ( Fun 𝐺 ∧ ( 𝐹 supp 𝑍 ) ⊆ ran 𝐺 ) ) → ( 𝐺 “ ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) ) = ( 𝐹 supp 𝑍 ) ) |
7 |
6
|
ex |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → ( ( Fun 𝐺 ∧ ( 𝐹 supp 𝑍 ) ⊆ ran 𝐺 ) → ( 𝐺 “ ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) ) = ( 𝐹 supp 𝑍 ) ) ) |