Metamath Proof Explorer


Theorem imacosupp

Description: The image of the support of the composition of two functions is the support of the outer function. (Contributed by AV, 30-May-2019)

Ref Expression
Assertion imacosupp ( ( 𝐹𝑉𝐺𝑊 ) → ( ( Fun 𝐺 ∧ ( 𝐹 supp 𝑍 ) ⊆ ran 𝐺 ) → ( 𝐺 “ ( ( 𝐹𝐺 ) supp 𝑍 ) ) = ( 𝐹 supp 𝑍 ) ) )

Proof

Step Hyp Ref Expression
1 suppco ( ( 𝐹𝑉𝐺𝑊 ) → ( ( 𝐹𝐺 ) supp 𝑍 ) = ( 𝐺 “ ( 𝐹 supp 𝑍 ) ) )
2 1 imaeq2d ( ( 𝐹𝑉𝐺𝑊 ) → ( 𝐺 “ ( ( 𝐹𝐺 ) supp 𝑍 ) ) = ( 𝐺 “ ( 𝐺 “ ( 𝐹 supp 𝑍 ) ) ) )
3 funforn ( Fun 𝐺𝐺 : dom 𝐺onto→ ran 𝐺 )
4 foimacnv ( ( 𝐺 : dom 𝐺onto→ ran 𝐺 ∧ ( 𝐹 supp 𝑍 ) ⊆ ran 𝐺 ) → ( 𝐺 “ ( 𝐺 “ ( 𝐹 supp 𝑍 ) ) ) = ( 𝐹 supp 𝑍 ) )
5 3 4 sylanb ( ( Fun 𝐺 ∧ ( 𝐹 supp 𝑍 ) ⊆ ran 𝐺 ) → ( 𝐺 “ ( 𝐺 “ ( 𝐹 supp 𝑍 ) ) ) = ( 𝐹 supp 𝑍 ) )
6 2 5 sylan9eq ( ( ( 𝐹𝑉𝐺𝑊 ) ∧ ( Fun 𝐺 ∧ ( 𝐹 supp 𝑍 ) ⊆ ran 𝐺 ) ) → ( 𝐺 “ ( ( 𝐹𝐺 ) supp 𝑍 ) ) = ( 𝐹 supp 𝑍 ) )
7 6 ex ( ( 𝐹𝑉𝐺𝑊 ) → ( ( Fun 𝐺 ∧ ( 𝐹 supp 𝑍 ) ⊆ ran 𝐺 ) → ( 𝐺 “ ( ( 𝐹𝐺 ) supp 𝑍 ) ) = ( 𝐹 supp 𝑍 ) ) )