Step |
Hyp |
Ref |
Expression |
1 |
|
anandir |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ∧ 𝑥 𝐹 𝑦 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ( ¬ 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) ) |
2 |
1
|
exbii |
⊢ ( ∃ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ∧ 𝑥 𝐹 𝑦 ) ↔ ∃ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ( ¬ 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) ) |
3 |
|
19.40 |
⊢ ( ∃ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ( ¬ 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) → ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ∃ 𝑥 ( ¬ 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) ) |
4 |
2 3
|
sylbi |
⊢ ( ∃ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ∧ 𝑥 𝐹 𝑦 ) → ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ∃ 𝑥 ( ¬ 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) ) |
5 |
|
nfv |
⊢ Ⅎ 𝑥 Fun ◡ 𝐹 |
6 |
|
nfe1 |
⊢ Ⅎ 𝑥 ∃ 𝑥 ( 𝑥 𝐹 𝑦 ∧ ¬ 𝑥 ∈ 𝐵 ) |
7 |
5 6
|
nfan |
⊢ Ⅎ 𝑥 ( Fun ◡ 𝐹 ∧ ∃ 𝑥 ( 𝑥 𝐹 𝑦 ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
8 |
|
funmo |
⊢ ( Fun ◡ 𝐹 → ∃* 𝑥 𝑦 ◡ 𝐹 𝑥 ) |
9 |
|
vex |
⊢ 𝑦 ∈ V |
10 |
|
vex |
⊢ 𝑥 ∈ V |
11 |
9 10
|
brcnv |
⊢ ( 𝑦 ◡ 𝐹 𝑥 ↔ 𝑥 𝐹 𝑦 ) |
12 |
11
|
mobii |
⊢ ( ∃* 𝑥 𝑦 ◡ 𝐹 𝑥 ↔ ∃* 𝑥 𝑥 𝐹 𝑦 ) |
13 |
8 12
|
sylib |
⊢ ( Fun ◡ 𝐹 → ∃* 𝑥 𝑥 𝐹 𝑦 ) |
14 |
|
mopick |
⊢ ( ( ∃* 𝑥 𝑥 𝐹 𝑦 ∧ ∃ 𝑥 ( 𝑥 𝐹 𝑦 ∧ ¬ 𝑥 ∈ 𝐵 ) ) → ( 𝑥 𝐹 𝑦 → ¬ 𝑥 ∈ 𝐵 ) ) |
15 |
13 14
|
sylan |
⊢ ( ( Fun ◡ 𝐹 ∧ ∃ 𝑥 ( 𝑥 𝐹 𝑦 ∧ ¬ 𝑥 ∈ 𝐵 ) ) → ( 𝑥 𝐹 𝑦 → ¬ 𝑥 ∈ 𝐵 ) ) |
16 |
15
|
con2d |
⊢ ( ( Fun ◡ 𝐹 ∧ ∃ 𝑥 ( 𝑥 𝐹 𝑦 ∧ ¬ 𝑥 ∈ 𝐵 ) ) → ( 𝑥 ∈ 𝐵 → ¬ 𝑥 𝐹 𝑦 ) ) |
17 |
|
imnan |
⊢ ( ( 𝑥 ∈ 𝐵 → ¬ 𝑥 𝐹 𝑦 ) ↔ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) |
18 |
16 17
|
sylib |
⊢ ( ( Fun ◡ 𝐹 ∧ ∃ 𝑥 ( 𝑥 𝐹 𝑦 ∧ ¬ 𝑥 ∈ 𝐵 ) ) → ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) |
19 |
7 18
|
alrimi |
⊢ ( ( Fun ◡ 𝐹 ∧ ∃ 𝑥 ( 𝑥 𝐹 𝑦 ∧ ¬ 𝑥 ∈ 𝐵 ) ) → ∀ 𝑥 ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) |
20 |
19
|
ex |
⊢ ( Fun ◡ 𝐹 → ( ∃ 𝑥 ( 𝑥 𝐹 𝑦 ∧ ¬ 𝑥 ∈ 𝐵 ) → ∀ 𝑥 ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) ) |
21 |
|
exancom |
⊢ ( ∃ 𝑥 ( 𝑥 𝐹 𝑦 ∧ ¬ 𝑥 ∈ 𝐵 ) ↔ ∃ 𝑥 ( ¬ 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) |
22 |
|
alnex |
⊢ ( ∀ 𝑥 ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ↔ ¬ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) |
23 |
20 21 22
|
3imtr3g |
⊢ ( Fun ◡ 𝐹 → ( ∃ 𝑥 ( ¬ 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) → ¬ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) ) |
24 |
23
|
anim2d |
⊢ ( Fun ◡ 𝐹 → ( ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ∃ 𝑥 ( ¬ 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) → ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ¬ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) ) ) |
25 |
4 24
|
syl5 |
⊢ ( Fun ◡ 𝐹 → ( ∃ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ∧ 𝑥 𝐹 𝑦 ) → ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ¬ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) ) ) |
26 |
|
19.29r |
⊢ ( ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ∀ 𝑥 ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) → ∃ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) ) |
27 |
22 26
|
sylan2br |
⊢ ( ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ¬ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) → ∃ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) ) |
28 |
|
andi |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ( ¬ 𝑥 ∈ 𝐵 ∨ ¬ 𝑥 𝐹 𝑦 ) ) ↔ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ¬ 𝑥 ∈ 𝐵 ) ∨ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ¬ 𝑥 𝐹 𝑦 ) ) ) |
29 |
|
ianor |
⊢ ( ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ↔ ( ¬ 𝑥 ∈ 𝐵 ∨ ¬ 𝑥 𝐹 𝑦 ) ) |
30 |
29
|
anbi2i |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ( ¬ 𝑥 ∈ 𝐵 ∨ ¬ 𝑥 𝐹 𝑦 ) ) ) |
31 |
|
an32 |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ∧ 𝑥 𝐹 𝑦 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
32 |
|
pm3.24 |
⊢ ¬ ( 𝑥 𝐹 𝑦 ∧ ¬ 𝑥 𝐹 𝑦 ) |
33 |
32
|
intnan |
⊢ ¬ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 𝐹 𝑦 ∧ ¬ 𝑥 𝐹 𝑦 ) ) |
34 |
|
anass |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ¬ 𝑥 𝐹 𝑦 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 𝐹 𝑦 ∧ ¬ 𝑥 𝐹 𝑦 ) ) ) |
35 |
33 34
|
mtbir |
⊢ ¬ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ¬ 𝑥 𝐹 𝑦 ) |
36 |
35
|
biorfi |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ¬ 𝑥 ∈ 𝐵 ) ↔ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ¬ 𝑥 ∈ 𝐵 ) ∨ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ¬ 𝑥 𝐹 𝑦 ) ) ) |
37 |
31 36
|
bitri |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ∧ 𝑥 𝐹 𝑦 ) ↔ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ¬ 𝑥 ∈ 𝐵 ) ∨ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ¬ 𝑥 𝐹 𝑦 ) ) ) |
38 |
28 30 37
|
3bitr4i |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ∧ 𝑥 𝐹 𝑦 ) ) |
39 |
38
|
exbii |
⊢ ( ∃ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) ↔ ∃ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ∧ 𝑥 𝐹 𝑦 ) ) |
40 |
27 39
|
sylib |
⊢ ( ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ¬ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) → ∃ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ∧ 𝑥 𝐹 𝑦 ) ) |
41 |
25 40
|
impbid1 |
⊢ ( Fun ◡ 𝐹 → ( ∃ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ∧ 𝑥 𝐹 𝑦 ) ↔ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ¬ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) ) ) |
42 |
|
eldif |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
43 |
42
|
anbi1i |
⊢ ( ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ∧ 𝑥 𝐹 𝑦 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ∧ 𝑥 𝐹 𝑦 ) ) |
44 |
43
|
exbii |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ∧ 𝑥 𝐹 𝑦 ) ↔ ∃ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ∧ 𝑥 𝐹 𝑦 ) ) |
45 |
9
|
elima2 |
⊢ ( 𝑦 ∈ ( 𝐹 “ 𝐴 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ) |
46 |
9
|
elima2 |
⊢ ( 𝑦 ∈ ( 𝐹 “ 𝐵 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) |
47 |
46
|
notbii |
⊢ ( ¬ 𝑦 ∈ ( 𝐹 “ 𝐵 ) ↔ ¬ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) |
48 |
45 47
|
anbi12i |
⊢ ( ( 𝑦 ∈ ( 𝐹 “ 𝐴 ) ∧ ¬ 𝑦 ∈ ( 𝐹 “ 𝐵 ) ) ↔ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ¬ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) ) |
49 |
41 44 48
|
3bitr4g |
⊢ ( Fun ◡ 𝐹 → ( ∃ 𝑥 ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ∧ 𝑥 𝐹 𝑦 ) ↔ ( 𝑦 ∈ ( 𝐹 “ 𝐴 ) ∧ ¬ 𝑦 ∈ ( 𝐹 “ 𝐵 ) ) ) ) |
50 |
9
|
elima2 |
⊢ ( 𝑦 ∈ ( 𝐹 “ ( 𝐴 ∖ 𝐵 ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ∧ 𝑥 𝐹 𝑦 ) ) |
51 |
|
eldif |
⊢ ( 𝑦 ∈ ( ( 𝐹 “ 𝐴 ) ∖ ( 𝐹 “ 𝐵 ) ) ↔ ( 𝑦 ∈ ( 𝐹 “ 𝐴 ) ∧ ¬ 𝑦 ∈ ( 𝐹 “ 𝐵 ) ) ) |
52 |
49 50 51
|
3bitr4g |
⊢ ( Fun ◡ 𝐹 → ( 𝑦 ∈ ( 𝐹 “ ( 𝐴 ∖ 𝐵 ) ) ↔ 𝑦 ∈ ( ( 𝐹 “ 𝐴 ) ∖ ( 𝐹 “ 𝐵 ) ) ) ) |
53 |
52
|
eqrdv |
⊢ ( Fun ◡ 𝐹 → ( 𝐹 “ ( 𝐴 ∖ 𝐵 ) ) = ( ( 𝐹 “ 𝐴 ) ∖ ( 𝐹 “ 𝐵 ) ) ) |