Metamath Proof Explorer


Theorem imadmrn

Description: The image of the domain of a class is the range of the class. (Contributed by NM, 14-Aug-1994)

Ref Expression
Assertion imadmrn ( 𝐴 “ dom 𝐴 ) = ran 𝐴

Proof

Step Hyp Ref Expression
1 vex 𝑥 ∈ V
2 vex 𝑦 ∈ V
3 1 2 opeldm ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴𝑥 ∈ dom 𝐴 )
4 3 pm4.71i ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ↔ ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴𝑥 ∈ dom 𝐴 ) )
5 ancom ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴𝑥 ∈ dom 𝐴 ) ↔ ( 𝑥 ∈ dom 𝐴 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ) )
6 4 5 bitr2i ( ( 𝑥 ∈ dom 𝐴 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ) ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 )
7 6 exbii ( ∃ 𝑥 ( 𝑥 ∈ dom 𝐴 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ) ↔ ∃ 𝑥𝑥 , 𝑦 ⟩ ∈ 𝐴 )
8 7 abbii { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ dom 𝐴 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ) } = { 𝑦 ∣ ∃ 𝑥𝑥 , 𝑦 ⟩ ∈ 𝐴 }
9 dfima3 ( 𝐴 “ dom 𝐴 ) = { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ dom 𝐴 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ) }
10 dfrn3 ran 𝐴 = { 𝑦 ∣ ∃ 𝑥𝑥 , 𝑦 ⟩ ∈ 𝐴 }
11 8 9 10 3eqtr4i ( 𝐴 “ dom 𝐴 ) = ran 𝐴