Step |
Hyp |
Ref |
Expression |
1 |
|
imadrhmcl.r |
⊢ 𝑅 = ( 𝑁 ↾s ( 𝐹 “ 𝑆 ) ) |
2 |
|
imadrhmcl.0 |
⊢ 0 = ( 0g ‘ 𝑁 ) |
3 |
|
imadrhmcl.h |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) ) |
4 |
|
imadrhmcl.s |
⊢ ( 𝜑 → 𝑆 ∈ ( SubDRing ‘ 𝑀 ) ) |
5 |
|
imadrhmcl.1 |
⊢ ( 𝜑 → ran 𝐹 ≠ { 0 } ) |
6 |
|
sdrgsubrg |
⊢ ( 𝑆 ∈ ( SubDRing ‘ 𝑀 ) → 𝑆 ∈ ( SubRing ‘ 𝑀 ) ) |
7 |
4 6
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝑀 ) ) |
8 |
|
rhmima |
⊢ ( ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) ∧ 𝑆 ∈ ( SubRing ‘ 𝑀 ) ) → ( 𝐹 “ 𝑆 ) ∈ ( SubRing ‘ 𝑁 ) ) |
9 |
3 7 8
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 “ 𝑆 ) ∈ ( SubRing ‘ 𝑁 ) ) |
10 |
1
|
subrgring |
⊢ ( ( 𝐹 “ 𝑆 ) ∈ ( SubRing ‘ 𝑁 ) → 𝑅 ∈ Ring ) |
11 |
9 10
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
13 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
14 |
12 13
|
unitss |
⊢ ( Unit ‘ 𝑅 ) ⊆ ( Base ‘ 𝑅 ) |
15 |
14
|
a1i |
⊢ ( 𝜑 → ( Unit ‘ 𝑅 ) ⊆ ( Base ‘ 𝑅 ) ) |
16 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
17 |
|
eqid |
⊢ ( Base ‘ 𝑁 ) = ( Base ‘ 𝑁 ) |
18 |
16 17
|
rhmf |
⊢ ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) → 𝐹 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) ) |
19 |
3 18
|
syl |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) → 𝐹 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) ) |
21 |
|
rhmrcl2 |
⊢ ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) → 𝑁 ∈ Ring ) |
22 |
3 21
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ Ring ) |
23 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) → ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) |
24 |
|
eqid |
⊢ ( 1r ‘ 𝑁 ) = ( 1r ‘ 𝑁 ) |
25 |
1 24
|
subrg1 |
⊢ ( ( 𝐹 “ 𝑆 ) ∈ ( SubRing ‘ 𝑁 ) → ( 1r ‘ 𝑁 ) = ( 1r ‘ 𝑅 ) ) |
26 |
9 25
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑁 ) = ( 1r ‘ 𝑅 ) ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) → ( 1r ‘ 𝑁 ) = ( 1r ‘ 𝑅 ) ) |
28 |
1 2
|
subrg0 |
⊢ ( ( 𝐹 “ 𝑆 ) ∈ ( SubRing ‘ 𝑁 ) → 0 = ( 0g ‘ 𝑅 ) ) |
29 |
9 28
|
syl |
⊢ ( 𝜑 → 0 = ( 0g ‘ 𝑅 ) ) |
30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) → 0 = ( 0g ‘ 𝑅 ) ) |
31 |
23 27 30
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) → 0 = ( 1r ‘ 𝑁 ) ) |
32 |
17 2 24
|
01eq0ring |
⊢ ( ( 𝑁 ∈ Ring ∧ 0 = ( 1r ‘ 𝑁 ) ) → ( Base ‘ 𝑁 ) = { 0 } ) |
33 |
22 31 32
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) → ( Base ‘ 𝑁 ) = { 0 } ) |
34 |
33
|
feq3d |
⊢ ( ( 𝜑 ∧ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) → ( 𝐹 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) ↔ 𝐹 : ( Base ‘ 𝑀 ) ⟶ { 0 } ) ) |
35 |
20 34
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) → 𝐹 : ( Base ‘ 𝑀 ) ⟶ { 0 } ) |
36 |
2
|
fvexi |
⊢ 0 ∈ V |
37 |
36
|
fconst2 |
⊢ ( 𝐹 : ( Base ‘ 𝑀 ) ⟶ { 0 } ↔ 𝐹 = ( ( Base ‘ 𝑀 ) × { 0 } ) ) |
38 |
35 37
|
sylib |
⊢ ( ( 𝜑 ∧ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) → 𝐹 = ( ( Base ‘ 𝑀 ) × { 0 } ) ) |
39 |
19
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ( Base ‘ 𝑀 ) ) |
40 |
|
sdrgrcl |
⊢ ( 𝑆 ∈ ( SubDRing ‘ 𝑀 ) → 𝑀 ∈ DivRing ) |
41 |
4 40
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ DivRing ) |
42 |
41
|
drngringd |
⊢ ( 𝜑 → 𝑀 ∈ Ring ) |
43 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
44 |
16 43
|
ring0cl |
⊢ ( 𝑀 ∈ Ring → ( 0g ‘ 𝑀 ) ∈ ( Base ‘ 𝑀 ) ) |
45 |
42 44
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑀 ) ∈ ( Base ‘ 𝑀 ) ) |
46 |
45
|
ne0d |
⊢ ( 𝜑 → ( Base ‘ 𝑀 ) ≠ ∅ ) |
47 |
|
fconst5 |
⊢ ( ( 𝐹 Fn ( Base ‘ 𝑀 ) ∧ ( Base ‘ 𝑀 ) ≠ ∅ ) → ( 𝐹 = ( ( Base ‘ 𝑀 ) × { 0 } ) ↔ ran 𝐹 = { 0 } ) ) |
48 |
39 46 47
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 = ( ( Base ‘ 𝑀 ) × { 0 } ) ↔ ran 𝐹 = { 0 } ) ) |
49 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) → ( 𝐹 = ( ( Base ‘ 𝑀 ) × { 0 } ) ↔ ran 𝐹 = { 0 } ) ) |
50 |
38 49
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) → ran 𝐹 = { 0 } ) |
51 |
5 50
|
mteqand |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
52 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
53 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
54 |
13 52 53
|
0unit |
⊢ ( 𝑅 ∈ Ring → ( ( 0g ‘ 𝑅 ) ∈ ( Unit ‘ 𝑅 ) ↔ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) ) |
55 |
11 54
|
syl |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑅 ) ∈ ( Unit ‘ 𝑅 ) ↔ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) ) |
56 |
55
|
necon3bbid |
⊢ ( 𝜑 → ( ¬ ( 0g ‘ 𝑅 ) ∈ ( Unit ‘ 𝑅 ) ↔ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) ) |
57 |
51 56
|
mpbird |
⊢ ( 𝜑 → ¬ ( 0g ‘ 𝑅 ) ∈ ( Unit ‘ 𝑅 ) ) |
58 |
|
ssdifsn |
⊢ ( ( Unit ‘ 𝑅 ) ⊆ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ↔ ( ( Unit ‘ 𝑅 ) ⊆ ( Base ‘ 𝑅 ) ∧ ¬ ( 0g ‘ 𝑅 ) ∈ ( Unit ‘ 𝑅 ) ) ) |
59 |
15 57 58
|
sylanbrc |
⊢ ( 𝜑 → ( Unit ‘ 𝑅 ) ⊆ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) |
60 |
39
|
fnfund |
⊢ ( 𝜑 → Fun 𝐹 ) |
61 |
1
|
ressbasss2 |
⊢ ( Base ‘ 𝑅 ) ⊆ ( 𝐹 “ 𝑆 ) |
62 |
|
eldifi |
⊢ ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
63 |
61 62
|
sselid |
⊢ ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) → 𝑥 ∈ ( 𝐹 “ 𝑆 ) ) |
64 |
|
fvelima |
⊢ ( ( Fun 𝐹 ∧ 𝑥 ∈ ( 𝐹 “ 𝑆 ) ) → ∃ 𝑎 ∈ 𝑆 ( 𝐹 ‘ 𝑎 ) = 𝑥 ) |
65 |
60 63 64
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) → ∃ 𝑎 ∈ 𝑆 ( 𝐹 ‘ 𝑎 ) = 𝑥 ) |
66 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∧ ( 𝑎 ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) → ( 𝐹 ‘ 𝑎 ) = 𝑥 ) |
67 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∧ ( 𝑎 ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) → 𝑎 ∈ 𝑆 ) |
68 |
67
|
fvresd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∧ ( 𝑎 ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) → ( ( 𝐹 ↾ 𝑆 ) ‘ 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) |
69 |
|
eqid |
⊢ ( 𝑀 ↾s 𝑆 ) = ( 𝑀 ↾s 𝑆 ) |
70 |
69
|
resrhm |
⊢ ( ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) ∧ 𝑆 ∈ ( SubRing ‘ 𝑀 ) ) → ( 𝐹 ↾ 𝑆 ) ∈ ( ( 𝑀 ↾s 𝑆 ) RingHom 𝑁 ) ) |
71 |
3 7 70
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝑆 ) ∈ ( ( 𝑀 ↾s 𝑆 ) RingHom 𝑁 ) ) |
72 |
|
df-ima |
⊢ ( 𝐹 “ 𝑆 ) = ran ( 𝐹 ↾ 𝑆 ) |
73 |
|
eqimss2 |
⊢ ( ( 𝐹 “ 𝑆 ) = ran ( 𝐹 ↾ 𝑆 ) → ran ( 𝐹 ↾ 𝑆 ) ⊆ ( 𝐹 “ 𝑆 ) ) |
74 |
72 73
|
mp1i |
⊢ ( 𝜑 → ran ( 𝐹 ↾ 𝑆 ) ⊆ ( 𝐹 “ 𝑆 ) ) |
75 |
1
|
resrhm2b |
⊢ ( ( ( 𝐹 “ 𝑆 ) ∈ ( SubRing ‘ 𝑁 ) ∧ ran ( 𝐹 ↾ 𝑆 ) ⊆ ( 𝐹 “ 𝑆 ) ) → ( ( 𝐹 ↾ 𝑆 ) ∈ ( ( 𝑀 ↾s 𝑆 ) RingHom 𝑁 ) ↔ ( 𝐹 ↾ 𝑆 ) ∈ ( ( 𝑀 ↾s 𝑆 ) RingHom 𝑅 ) ) ) |
76 |
9 74 75
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝑆 ) ∈ ( ( 𝑀 ↾s 𝑆 ) RingHom 𝑁 ) ↔ ( 𝐹 ↾ 𝑆 ) ∈ ( ( 𝑀 ↾s 𝑆 ) RingHom 𝑅 ) ) ) |
77 |
71 76
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝑆 ) ∈ ( ( 𝑀 ↾s 𝑆 ) RingHom 𝑅 ) ) |
78 |
77
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∧ ( 𝑎 ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) → ( 𝐹 ↾ 𝑆 ) ∈ ( ( 𝑀 ↾s 𝑆 ) RingHom 𝑅 ) ) |
79 |
|
eldifsni |
⊢ ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) → 𝑥 ≠ ( 0g ‘ 𝑅 ) ) |
80 |
79
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∧ ( 𝑎 ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) → 𝑥 ≠ ( 0g ‘ 𝑅 ) ) |
81 |
68
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∧ ( 𝑎 ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) ∧ 𝑎 = ( 0g ‘ 𝑀 ) ) → ( ( 𝐹 ↾ 𝑆 ) ‘ 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) |
82 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∧ ( 𝑎 ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) ∧ 𝑎 = ( 0g ‘ 𝑀 ) ) → 𝑎 = ( 0g ‘ 𝑀 ) ) |
83 |
82
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∧ ( 𝑎 ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) ∧ 𝑎 = ( 0g ‘ 𝑀 ) ) → ( ( 𝐹 ↾ 𝑆 ) ‘ 𝑎 ) = ( ( 𝐹 ↾ 𝑆 ) ‘ ( 0g ‘ 𝑀 ) ) ) |
84 |
69 43
|
subrg0 |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑀 ) → ( 0g ‘ 𝑀 ) = ( 0g ‘ ( 𝑀 ↾s 𝑆 ) ) ) |
85 |
7 84
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑀 ) = ( 0g ‘ ( 𝑀 ↾s 𝑆 ) ) ) |
86 |
85
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝑆 ) ‘ ( 0g ‘ 𝑀 ) ) = ( ( 𝐹 ↾ 𝑆 ) ‘ ( 0g ‘ ( 𝑀 ↾s 𝑆 ) ) ) ) |
87 |
|
rhmghm |
⊢ ( ( 𝐹 ↾ 𝑆 ) ∈ ( ( 𝑀 ↾s 𝑆 ) RingHom 𝑅 ) → ( 𝐹 ↾ 𝑆 ) ∈ ( ( 𝑀 ↾s 𝑆 ) GrpHom 𝑅 ) ) |
88 |
|
eqid |
⊢ ( 0g ‘ ( 𝑀 ↾s 𝑆 ) ) = ( 0g ‘ ( 𝑀 ↾s 𝑆 ) ) |
89 |
88 52
|
ghmid |
⊢ ( ( 𝐹 ↾ 𝑆 ) ∈ ( ( 𝑀 ↾s 𝑆 ) GrpHom 𝑅 ) → ( ( 𝐹 ↾ 𝑆 ) ‘ ( 0g ‘ ( 𝑀 ↾s 𝑆 ) ) ) = ( 0g ‘ 𝑅 ) ) |
90 |
77 87 89
|
3syl |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝑆 ) ‘ ( 0g ‘ ( 𝑀 ↾s 𝑆 ) ) ) = ( 0g ‘ 𝑅 ) ) |
91 |
86 90
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝑆 ) ‘ ( 0g ‘ 𝑀 ) ) = ( 0g ‘ 𝑅 ) ) |
92 |
91
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∧ ( 𝑎 ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) ∧ 𝑎 = ( 0g ‘ 𝑀 ) ) → ( ( 𝐹 ↾ 𝑆 ) ‘ ( 0g ‘ 𝑀 ) ) = ( 0g ‘ 𝑅 ) ) |
93 |
83 92
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∧ ( 𝑎 ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) ∧ 𝑎 = ( 0g ‘ 𝑀 ) ) → ( ( 𝐹 ↾ 𝑆 ) ‘ 𝑎 ) = ( 0g ‘ 𝑅 ) ) |
94 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∧ ( 𝑎 ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) ∧ 𝑎 = ( 0g ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑎 ) = 𝑥 ) |
95 |
81 93 94
|
3eqtr3rd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∧ ( 𝑎 ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) ∧ 𝑎 = ( 0g ‘ 𝑀 ) ) → 𝑥 = ( 0g ‘ 𝑅 ) ) |
96 |
80 95
|
mteqand |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∧ ( 𝑎 ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) → 𝑎 ≠ ( 0g ‘ 𝑀 ) ) |
97 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∧ ( 𝑎 ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) → 𝑆 ∈ ( SubDRing ‘ 𝑀 ) ) |
98 |
|
eqid |
⊢ ( Unit ‘ ( 𝑀 ↾s 𝑆 ) ) = ( Unit ‘ ( 𝑀 ↾s 𝑆 ) ) |
99 |
69 43 98
|
sdrgunit |
⊢ ( 𝑆 ∈ ( SubDRing ‘ 𝑀 ) → ( 𝑎 ∈ ( Unit ‘ ( 𝑀 ↾s 𝑆 ) ) ↔ ( 𝑎 ∈ 𝑆 ∧ 𝑎 ≠ ( 0g ‘ 𝑀 ) ) ) ) |
100 |
97 99
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∧ ( 𝑎 ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) → ( 𝑎 ∈ ( Unit ‘ ( 𝑀 ↾s 𝑆 ) ) ↔ ( 𝑎 ∈ 𝑆 ∧ 𝑎 ≠ ( 0g ‘ 𝑀 ) ) ) ) |
101 |
67 96 100
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∧ ( 𝑎 ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) → 𝑎 ∈ ( Unit ‘ ( 𝑀 ↾s 𝑆 ) ) ) |
102 |
|
elrhmunit |
⊢ ( ( ( 𝐹 ↾ 𝑆 ) ∈ ( ( 𝑀 ↾s 𝑆 ) RingHom 𝑅 ) ∧ 𝑎 ∈ ( Unit ‘ ( 𝑀 ↾s 𝑆 ) ) ) → ( ( 𝐹 ↾ 𝑆 ) ‘ 𝑎 ) ∈ ( Unit ‘ 𝑅 ) ) |
103 |
78 101 102
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∧ ( 𝑎 ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) → ( ( 𝐹 ↾ 𝑆 ) ‘ 𝑎 ) ∈ ( Unit ‘ 𝑅 ) ) |
104 |
68 103
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∧ ( 𝑎 ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) → ( 𝐹 ‘ 𝑎 ) ∈ ( Unit ‘ 𝑅 ) ) |
105 |
66 104
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∧ ( 𝑎 ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) → 𝑥 ∈ ( Unit ‘ 𝑅 ) ) |
106 |
65 105
|
rexlimddv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) → 𝑥 ∈ ( Unit ‘ 𝑅 ) ) |
107 |
59 106
|
eqelssd |
⊢ ( 𝜑 → ( Unit ‘ 𝑅 ) = ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) |
108 |
12 13 52
|
isdrng |
⊢ ( 𝑅 ∈ DivRing ↔ ( 𝑅 ∈ Ring ∧ ( Unit ‘ 𝑅 ) = ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ) |
109 |
11 107 108
|
sylanbrc |
⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |