Step |
Hyp |
Ref |
Expression |
1 |
|
imaelfm.l |
⊢ 𝐿 = ( 𝑌 filGen 𝐵 ) |
2 |
|
fimass |
⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → ( 𝐹 “ 𝑆 ) ⊆ 𝑋 ) |
3 |
2
|
3ad2ant3 |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐹 “ 𝑆 ) ⊆ 𝑋 ) |
4 |
|
ssid |
⊢ ( 𝐹 “ 𝑆 ) ⊆ ( 𝐹 “ 𝑆 ) |
5 |
|
imaeq2 |
⊢ ( 𝑥 = 𝑆 → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑆 ) ) |
6 |
5
|
sseq1d |
⊢ ( 𝑥 = 𝑆 → ( ( 𝐹 “ 𝑥 ) ⊆ ( 𝐹 “ 𝑆 ) ↔ ( 𝐹 “ 𝑆 ) ⊆ ( 𝐹 “ 𝑆 ) ) ) |
7 |
6
|
rspcev |
⊢ ( ( 𝑆 ∈ 𝐿 ∧ ( 𝐹 “ 𝑆 ) ⊆ ( 𝐹 “ 𝑆 ) ) → ∃ 𝑥 ∈ 𝐿 ( 𝐹 “ 𝑥 ) ⊆ ( 𝐹 “ 𝑆 ) ) |
8 |
4 7
|
mpan2 |
⊢ ( 𝑆 ∈ 𝐿 → ∃ 𝑥 ∈ 𝐿 ( 𝐹 “ 𝑥 ) ⊆ ( 𝐹 “ 𝑆 ) ) |
9 |
3 8
|
anim12i |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑆 ∈ 𝐿 ) → ( ( 𝐹 “ 𝑆 ) ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐿 ( 𝐹 “ 𝑥 ) ⊆ ( 𝐹 “ 𝑆 ) ) ) |
10 |
1
|
elfm2 |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝐹 “ 𝑆 ) ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ↔ ( ( 𝐹 “ 𝑆 ) ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐿 ( 𝐹 “ 𝑥 ) ⊆ ( 𝐹 “ 𝑆 ) ) ) ) |
11 |
10
|
adantr |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑆 ∈ 𝐿 ) → ( ( 𝐹 “ 𝑆 ) ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ↔ ( ( 𝐹 “ 𝑆 ) ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐿 ( 𝐹 “ 𝑥 ) ⊆ ( 𝐹 “ 𝑆 ) ) ) ) |
12 |
9 11
|
mpbird |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑆 ∈ 𝐿 ) → ( 𝐹 “ 𝑆 ) ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ) |