| Step | Hyp | Ref | Expression | 
						
							| 1 |  | imaelfm.l | ⊢ 𝐿  =  ( 𝑌 filGen 𝐵 ) | 
						
							| 2 |  | fimass | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋  →  ( 𝐹  “  𝑆 )  ⊆  𝑋 ) | 
						
							| 3 | 2 | 3ad2ant3 | ⊢ ( ( 𝑋  ∈  𝐴  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( 𝐹  “  𝑆 )  ⊆  𝑋 ) | 
						
							| 4 |  | ssid | ⊢ ( 𝐹  “  𝑆 )  ⊆  ( 𝐹  “  𝑆 ) | 
						
							| 5 |  | imaeq2 | ⊢ ( 𝑥  =  𝑆  →  ( 𝐹  “  𝑥 )  =  ( 𝐹  “  𝑆 ) ) | 
						
							| 6 | 5 | sseq1d | ⊢ ( 𝑥  =  𝑆  →  ( ( 𝐹  “  𝑥 )  ⊆  ( 𝐹  “  𝑆 )  ↔  ( 𝐹  “  𝑆 )  ⊆  ( 𝐹  “  𝑆 ) ) ) | 
						
							| 7 | 6 | rspcev | ⊢ ( ( 𝑆  ∈  𝐿  ∧  ( 𝐹  “  𝑆 )  ⊆  ( 𝐹  “  𝑆 ) )  →  ∃ 𝑥  ∈  𝐿 ( 𝐹  “  𝑥 )  ⊆  ( 𝐹  “  𝑆 ) ) | 
						
							| 8 | 4 7 | mpan2 | ⊢ ( 𝑆  ∈  𝐿  →  ∃ 𝑥  ∈  𝐿 ( 𝐹  “  𝑥 )  ⊆  ( 𝐹  “  𝑆 ) ) | 
						
							| 9 | 3 8 | anim12i | ⊢ ( ( ( 𝑋  ∈  𝐴  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝑆  ∈  𝐿 )  →  ( ( 𝐹  “  𝑆 )  ⊆  𝑋  ∧  ∃ 𝑥  ∈  𝐿 ( 𝐹  “  𝑥 )  ⊆  ( 𝐹  “  𝑆 ) ) ) | 
						
							| 10 | 1 | elfm2 | ⊢ ( ( 𝑋  ∈  𝐴  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( ( 𝐹  “  𝑆 )  ∈  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝐵 )  ↔  ( ( 𝐹  “  𝑆 )  ⊆  𝑋  ∧  ∃ 𝑥  ∈  𝐿 ( 𝐹  “  𝑥 )  ⊆  ( 𝐹  “  𝑆 ) ) ) ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( ( 𝑋  ∈  𝐴  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝑆  ∈  𝐿 )  →  ( ( 𝐹  “  𝑆 )  ∈  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝐵 )  ↔  ( ( 𝐹  “  𝑆 )  ⊆  𝑋  ∧  ∃ 𝑥  ∈  𝐿 ( 𝐹  “  𝑥 )  ⊆  ( 𝐹  “  𝑆 ) ) ) ) | 
						
							| 12 | 9 11 | mpbird | ⊢ ( ( ( 𝑋  ∈  𝐴  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝑆  ∈  𝐿 )  →  ( 𝐹  “  𝑆 )  ∈  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝐵 ) ) |