Step |
Hyp |
Ref |
Expression |
1 |
|
rnelsh.1 |
⊢ 𝑇 ∈ LinOp |
2 |
|
imaelsh.2 |
⊢ 𝐴 ∈ Sℋ |
3 |
|
imassrn |
⊢ ( 𝑇 “ 𝐴 ) ⊆ ran 𝑇 |
4 |
1
|
lnopfi |
⊢ 𝑇 : ℋ ⟶ ℋ |
5 |
|
frn |
⊢ ( 𝑇 : ℋ ⟶ ℋ → ran 𝑇 ⊆ ℋ ) |
6 |
4 5
|
ax-mp |
⊢ ran 𝑇 ⊆ ℋ |
7 |
3 6
|
sstri |
⊢ ( 𝑇 “ 𝐴 ) ⊆ ℋ |
8 |
1
|
lnop0i |
⊢ ( 𝑇 ‘ 0ℎ ) = 0ℎ |
9 |
|
sh0 |
⊢ ( 𝐴 ∈ Sℋ → 0ℎ ∈ 𝐴 ) |
10 |
2 9
|
ax-mp |
⊢ 0ℎ ∈ 𝐴 |
11 |
|
ffun |
⊢ ( 𝑇 : ℋ ⟶ ℋ → Fun 𝑇 ) |
12 |
4 11
|
ax-mp |
⊢ Fun 𝑇 |
13 |
2
|
shssii |
⊢ 𝐴 ⊆ ℋ |
14 |
4
|
fdmi |
⊢ dom 𝑇 = ℋ |
15 |
13 14
|
sseqtrri |
⊢ 𝐴 ⊆ dom 𝑇 |
16 |
|
funfvima2 |
⊢ ( ( Fun 𝑇 ∧ 𝐴 ⊆ dom 𝑇 ) → ( 0ℎ ∈ 𝐴 → ( 𝑇 ‘ 0ℎ ) ∈ ( 𝑇 “ 𝐴 ) ) ) |
17 |
12 15 16
|
mp2an |
⊢ ( 0ℎ ∈ 𝐴 → ( 𝑇 ‘ 0ℎ ) ∈ ( 𝑇 “ 𝐴 ) ) |
18 |
10 17
|
ax-mp |
⊢ ( 𝑇 ‘ 0ℎ ) ∈ ( 𝑇 “ 𝐴 ) |
19 |
8 18
|
eqeltrri |
⊢ 0ℎ ∈ ( 𝑇 “ 𝐴 ) |
20 |
7 19
|
pm3.2i |
⊢ ( ( 𝑇 “ 𝐴 ) ⊆ ℋ ∧ 0ℎ ∈ ( 𝑇 “ 𝐴 ) ) |
21 |
|
ffn |
⊢ ( 𝑇 : ℋ ⟶ ℋ → 𝑇 Fn ℋ ) |
22 |
4 21
|
ax-mp |
⊢ 𝑇 Fn ℋ |
23 |
|
oveq1 |
⊢ ( 𝑢 = ( 𝑇 ‘ 𝑥 ) → ( 𝑢 +ℎ 𝑣 ) = ( ( 𝑇 ‘ 𝑥 ) +ℎ 𝑣 ) ) |
24 |
23
|
eleq1d |
⊢ ( 𝑢 = ( 𝑇 ‘ 𝑥 ) → ( ( 𝑢 +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ↔ ( ( 𝑇 ‘ 𝑥 ) +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ) ) |
25 |
24
|
ralbidv |
⊢ ( 𝑢 = ( 𝑇 ‘ 𝑥 ) → ( ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( 𝑢 +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ↔ ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( ( 𝑇 ‘ 𝑥 ) +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ) ) |
26 |
25
|
ralima |
⊢ ( ( 𝑇 Fn ℋ ∧ 𝐴 ⊆ ℋ ) → ( ∀ 𝑢 ∈ ( 𝑇 “ 𝐴 ) ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( 𝑢 +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( ( 𝑇 ‘ 𝑥 ) +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ) ) |
27 |
22 13 26
|
mp2an |
⊢ ( ∀ 𝑢 ∈ ( 𝑇 “ 𝐴 ) ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( 𝑢 +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( ( 𝑇 ‘ 𝑥 ) +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ) |
28 |
2
|
sheli |
⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ℋ ) |
29 |
2
|
sheli |
⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ℋ ) |
30 |
1
|
lnopaddi |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ ( 𝑥 +ℎ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑦 ) ) ) |
31 |
28 29 30
|
syl2an |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑇 ‘ ( 𝑥 +ℎ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑦 ) ) ) |
32 |
|
shaddcl |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 +ℎ 𝑦 ) ∈ 𝐴 ) |
33 |
2 32
|
mp3an1 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 +ℎ 𝑦 ) ∈ 𝐴 ) |
34 |
|
funfvima2 |
⊢ ( ( Fun 𝑇 ∧ 𝐴 ⊆ dom 𝑇 ) → ( ( 𝑥 +ℎ 𝑦 ) ∈ 𝐴 → ( 𝑇 ‘ ( 𝑥 +ℎ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) ) |
35 |
12 15 34
|
mp2an |
⊢ ( ( 𝑥 +ℎ 𝑦 ) ∈ 𝐴 → ( 𝑇 ‘ ( 𝑥 +ℎ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) |
36 |
33 35
|
syl |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑇 ‘ ( 𝑥 +ℎ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) |
37 |
31 36
|
eqeltrrd |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) |
38 |
37
|
ralrimiva |
⊢ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐴 ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) |
39 |
|
oveq2 |
⊢ ( 𝑣 = ( 𝑇 ‘ 𝑦 ) → ( ( 𝑇 ‘ 𝑥 ) +ℎ 𝑣 ) = ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑦 ) ) ) |
40 |
39
|
eleq1d |
⊢ ( 𝑣 = ( 𝑇 ‘ 𝑦 ) → ( ( ( 𝑇 ‘ 𝑥 ) +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ↔ ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) ) |
41 |
40
|
ralima |
⊢ ( ( 𝑇 Fn ℋ ∧ 𝐴 ⊆ ℋ ) → ( ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( ( 𝑇 ‘ 𝑥 ) +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ↔ ∀ 𝑦 ∈ 𝐴 ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) ) |
42 |
22 13 41
|
mp2an |
⊢ ( ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( ( 𝑇 ‘ 𝑥 ) +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ↔ ∀ 𝑦 ∈ 𝐴 ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) |
43 |
38 42
|
sylibr |
⊢ ( 𝑥 ∈ 𝐴 → ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( ( 𝑇 ‘ 𝑥 ) +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ) |
44 |
27 43
|
mprgbir |
⊢ ∀ 𝑢 ∈ ( 𝑇 “ 𝐴 ) ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( 𝑢 +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) |
45 |
1
|
lnopmuli |
⊢ ( ( 𝑢 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ ( 𝑢 ·ℎ 𝑦 ) ) = ( 𝑢 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) |
46 |
29 45
|
sylan2 |
⊢ ( ( 𝑢 ∈ ℂ ∧ 𝑦 ∈ 𝐴 ) → ( 𝑇 ‘ ( 𝑢 ·ℎ 𝑦 ) ) = ( 𝑢 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) |
47 |
|
shmulcl |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝑢 ∈ ℂ ∧ 𝑦 ∈ 𝐴 ) → ( 𝑢 ·ℎ 𝑦 ) ∈ 𝐴 ) |
48 |
2 47
|
mp3an1 |
⊢ ( ( 𝑢 ∈ ℂ ∧ 𝑦 ∈ 𝐴 ) → ( 𝑢 ·ℎ 𝑦 ) ∈ 𝐴 ) |
49 |
|
funfvima2 |
⊢ ( ( Fun 𝑇 ∧ 𝐴 ⊆ dom 𝑇 ) → ( ( 𝑢 ·ℎ 𝑦 ) ∈ 𝐴 → ( 𝑇 ‘ ( 𝑢 ·ℎ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) ) |
50 |
12 15 49
|
mp2an |
⊢ ( ( 𝑢 ·ℎ 𝑦 ) ∈ 𝐴 → ( 𝑇 ‘ ( 𝑢 ·ℎ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) |
51 |
48 50
|
syl |
⊢ ( ( 𝑢 ∈ ℂ ∧ 𝑦 ∈ 𝐴 ) → ( 𝑇 ‘ ( 𝑢 ·ℎ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) |
52 |
46 51
|
eqeltrrd |
⊢ ( ( 𝑢 ∈ ℂ ∧ 𝑦 ∈ 𝐴 ) → ( 𝑢 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) |
53 |
52
|
ralrimiva |
⊢ ( 𝑢 ∈ ℂ → ∀ 𝑦 ∈ 𝐴 ( 𝑢 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) |
54 |
|
oveq2 |
⊢ ( 𝑣 = ( 𝑇 ‘ 𝑦 ) → ( 𝑢 ·ℎ 𝑣 ) = ( 𝑢 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) |
55 |
54
|
eleq1d |
⊢ ( 𝑣 = ( 𝑇 ‘ 𝑦 ) → ( ( 𝑢 ·ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ↔ ( 𝑢 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) ) |
56 |
55
|
ralima |
⊢ ( ( 𝑇 Fn ℋ ∧ 𝐴 ⊆ ℋ ) → ( ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( 𝑢 ·ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑢 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) ) |
57 |
22 13 56
|
mp2an |
⊢ ( ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( 𝑢 ·ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑢 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) |
58 |
53 57
|
sylibr |
⊢ ( 𝑢 ∈ ℂ → ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( 𝑢 ·ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ) |
59 |
58
|
rgen |
⊢ ∀ 𝑢 ∈ ℂ ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( 𝑢 ·ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) |
60 |
44 59
|
pm3.2i |
⊢ ( ∀ 𝑢 ∈ ( 𝑇 “ 𝐴 ) ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( 𝑢 +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ∧ ∀ 𝑢 ∈ ℂ ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( 𝑢 ·ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ) |
61 |
|
issh2 |
⊢ ( ( 𝑇 “ 𝐴 ) ∈ Sℋ ↔ ( ( ( 𝑇 “ 𝐴 ) ⊆ ℋ ∧ 0ℎ ∈ ( 𝑇 “ 𝐴 ) ) ∧ ( ∀ 𝑢 ∈ ( 𝑇 “ 𝐴 ) ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( 𝑢 +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ∧ ∀ 𝑢 ∈ ℂ ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( 𝑢 ·ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ) ) ) |
62 |
20 60 61
|
mpbir2an |
⊢ ( 𝑇 “ 𝐴 ) ∈ Sℋ |