| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rnelsh.1 |
⊢ 𝑇 ∈ LinOp |
| 2 |
|
imaelsh.2 |
⊢ 𝐴 ∈ Sℋ |
| 3 |
|
imassrn |
⊢ ( 𝑇 “ 𝐴 ) ⊆ ran 𝑇 |
| 4 |
1
|
lnopfi |
⊢ 𝑇 : ℋ ⟶ ℋ |
| 5 |
|
frn |
⊢ ( 𝑇 : ℋ ⟶ ℋ → ran 𝑇 ⊆ ℋ ) |
| 6 |
4 5
|
ax-mp |
⊢ ran 𝑇 ⊆ ℋ |
| 7 |
3 6
|
sstri |
⊢ ( 𝑇 “ 𝐴 ) ⊆ ℋ |
| 8 |
1
|
lnop0i |
⊢ ( 𝑇 ‘ 0ℎ ) = 0ℎ |
| 9 |
|
sh0 |
⊢ ( 𝐴 ∈ Sℋ → 0ℎ ∈ 𝐴 ) |
| 10 |
2 9
|
ax-mp |
⊢ 0ℎ ∈ 𝐴 |
| 11 |
|
ffun |
⊢ ( 𝑇 : ℋ ⟶ ℋ → Fun 𝑇 ) |
| 12 |
4 11
|
ax-mp |
⊢ Fun 𝑇 |
| 13 |
2
|
shssii |
⊢ 𝐴 ⊆ ℋ |
| 14 |
4
|
fdmi |
⊢ dom 𝑇 = ℋ |
| 15 |
13 14
|
sseqtrri |
⊢ 𝐴 ⊆ dom 𝑇 |
| 16 |
|
funfvima2 |
⊢ ( ( Fun 𝑇 ∧ 𝐴 ⊆ dom 𝑇 ) → ( 0ℎ ∈ 𝐴 → ( 𝑇 ‘ 0ℎ ) ∈ ( 𝑇 “ 𝐴 ) ) ) |
| 17 |
12 15 16
|
mp2an |
⊢ ( 0ℎ ∈ 𝐴 → ( 𝑇 ‘ 0ℎ ) ∈ ( 𝑇 “ 𝐴 ) ) |
| 18 |
10 17
|
ax-mp |
⊢ ( 𝑇 ‘ 0ℎ ) ∈ ( 𝑇 “ 𝐴 ) |
| 19 |
8 18
|
eqeltrri |
⊢ 0ℎ ∈ ( 𝑇 “ 𝐴 ) |
| 20 |
7 19
|
pm3.2i |
⊢ ( ( 𝑇 “ 𝐴 ) ⊆ ℋ ∧ 0ℎ ∈ ( 𝑇 “ 𝐴 ) ) |
| 21 |
|
ffn |
⊢ ( 𝑇 : ℋ ⟶ ℋ → 𝑇 Fn ℋ ) |
| 22 |
4 21
|
ax-mp |
⊢ 𝑇 Fn ℋ |
| 23 |
|
oveq1 |
⊢ ( 𝑢 = ( 𝑇 ‘ 𝑥 ) → ( 𝑢 +ℎ 𝑣 ) = ( ( 𝑇 ‘ 𝑥 ) +ℎ 𝑣 ) ) |
| 24 |
23
|
eleq1d |
⊢ ( 𝑢 = ( 𝑇 ‘ 𝑥 ) → ( ( 𝑢 +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ↔ ( ( 𝑇 ‘ 𝑥 ) +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ) ) |
| 25 |
24
|
ralbidv |
⊢ ( 𝑢 = ( 𝑇 ‘ 𝑥 ) → ( ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( 𝑢 +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ↔ ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( ( 𝑇 ‘ 𝑥 ) +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ) ) |
| 26 |
25
|
ralima |
⊢ ( ( 𝑇 Fn ℋ ∧ 𝐴 ⊆ ℋ ) → ( ∀ 𝑢 ∈ ( 𝑇 “ 𝐴 ) ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( 𝑢 +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( ( 𝑇 ‘ 𝑥 ) +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ) ) |
| 27 |
22 13 26
|
mp2an |
⊢ ( ∀ 𝑢 ∈ ( 𝑇 “ 𝐴 ) ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( 𝑢 +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( ( 𝑇 ‘ 𝑥 ) +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ) |
| 28 |
2
|
sheli |
⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ℋ ) |
| 29 |
2
|
sheli |
⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ℋ ) |
| 30 |
1
|
lnopaddi |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ ( 𝑥 +ℎ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑦 ) ) ) |
| 31 |
28 29 30
|
syl2an |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑇 ‘ ( 𝑥 +ℎ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑦 ) ) ) |
| 32 |
|
shaddcl |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 +ℎ 𝑦 ) ∈ 𝐴 ) |
| 33 |
2 32
|
mp3an1 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 +ℎ 𝑦 ) ∈ 𝐴 ) |
| 34 |
|
funfvima2 |
⊢ ( ( Fun 𝑇 ∧ 𝐴 ⊆ dom 𝑇 ) → ( ( 𝑥 +ℎ 𝑦 ) ∈ 𝐴 → ( 𝑇 ‘ ( 𝑥 +ℎ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) ) |
| 35 |
12 15 34
|
mp2an |
⊢ ( ( 𝑥 +ℎ 𝑦 ) ∈ 𝐴 → ( 𝑇 ‘ ( 𝑥 +ℎ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) |
| 36 |
33 35
|
syl |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑇 ‘ ( 𝑥 +ℎ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) |
| 37 |
31 36
|
eqeltrrd |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) |
| 38 |
37
|
ralrimiva |
⊢ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐴 ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) |
| 39 |
|
oveq2 |
⊢ ( 𝑣 = ( 𝑇 ‘ 𝑦 ) → ( ( 𝑇 ‘ 𝑥 ) +ℎ 𝑣 ) = ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑦 ) ) ) |
| 40 |
39
|
eleq1d |
⊢ ( 𝑣 = ( 𝑇 ‘ 𝑦 ) → ( ( ( 𝑇 ‘ 𝑥 ) +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ↔ ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) ) |
| 41 |
40
|
ralima |
⊢ ( ( 𝑇 Fn ℋ ∧ 𝐴 ⊆ ℋ ) → ( ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( ( 𝑇 ‘ 𝑥 ) +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ↔ ∀ 𝑦 ∈ 𝐴 ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) ) |
| 42 |
22 13 41
|
mp2an |
⊢ ( ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( ( 𝑇 ‘ 𝑥 ) +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ↔ ∀ 𝑦 ∈ 𝐴 ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) |
| 43 |
38 42
|
sylibr |
⊢ ( 𝑥 ∈ 𝐴 → ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( ( 𝑇 ‘ 𝑥 ) +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ) |
| 44 |
27 43
|
mprgbir |
⊢ ∀ 𝑢 ∈ ( 𝑇 “ 𝐴 ) ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( 𝑢 +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) |
| 45 |
1
|
lnopmuli |
⊢ ( ( 𝑢 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ ( 𝑢 ·ℎ 𝑦 ) ) = ( 𝑢 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) |
| 46 |
29 45
|
sylan2 |
⊢ ( ( 𝑢 ∈ ℂ ∧ 𝑦 ∈ 𝐴 ) → ( 𝑇 ‘ ( 𝑢 ·ℎ 𝑦 ) ) = ( 𝑢 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) |
| 47 |
|
shmulcl |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝑢 ∈ ℂ ∧ 𝑦 ∈ 𝐴 ) → ( 𝑢 ·ℎ 𝑦 ) ∈ 𝐴 ) |
| 48 |
2 47
|
mp3an1 |
⊢ ( ( 𝑢 ∈ ℂ ∧ 𝑦 ∈ 𝐴 ) → ( 𝑢 ·ℎ 𝑦 ) ∈ 𝐴 ) |
| 49 |
|
funfvima2 |
⊢ ( ( Fun 𝑇 ∧ 𝐴 ⊆ dom 𝑇 ) → ( ( 𝑢 ·ℎ 𝑦 ) ∈ 𝐴 → ( 𝑇 ‘ ( 𝑢 ·ℎ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) ) |
| 50 |
12 15 49
|
mp2an |
⊢ ( ( 𝑢 ·ℎ 𝑦 ) ∈ 𝐴 → ( 𝑇 ‘ ( 𝑢 ·ℎ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) |
| 51 |
48 50
|
syl |
⊢ ( ( 𝑢 ∈ ℂ ∧ 𝑦 ∈ 𝐴 ) → ( 𝑇 ‘ ( 𝑢 ·ℎ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) |
| 52 |
46 51
|
eqeltrrd |
⊢ ( ( 𝑢 ∈ ℂ ∧ 𝑦 ∈ 𝐴 ) → ( 𝑢 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) |
| 53 |
52
|
ralrimiva |
⊢ ( 𝑢 ∈ ℂ → ∀ 𝑦 ∈ 𝐴 ( 𝑢 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) |
| 54 |
|
oveq2 |
⊢ ( 𝑣 = ( 𝑇 ‘ 𝑦 ) → ( 𝑢 ·ℎ 𝑣 ) = ( 𝑢 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) |
| 55 |
54
|
eleq1d |
⊢ ( 𝑣 = ( 𝑇 ‘ 𝑦 ) → ( ( 𝑢 ·ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ↔ ( 𝑢 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) ) |
| 56 |
55
|
ralima |
⊢ ( ( 𝑇 Fn ℋ ∧ 𝐴 ⊆ ℋ ) → ( ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( 𝑢 ·ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑢 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) ) |
| 57 |
22 13 56
|
mp2an |
⊢ ( ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( 𝑢 ·ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑢 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) |
| 58 |
53 57
|
sylibr |
⊢ ( 𝑢 ∈ ℂ → ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( 𝑢 ·ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ) |
| 59 |
58
|
rgen |
⊢ ∀ 𝑢 ∈ ℂ ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( 𝑢 ·ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) |
| 60 |
44 59
|
pm3.2i |
⊢ ( ∀ 𝑢 ∈ ( 𝑇 “ 𝐴 ) ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( 𝑢 +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ∧ ∀ 𝑢 ∈ ℂ ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( 𝑢 ·ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ) |
| 61 |
|
issh2 |
⊢ ( ( 𝑇 “ 𝐴 ) ∈ Sℋ ↔ ( ( ( 𝑇 “ 𝐴 ) ⊆ ℋ ∧ 0ℎ ∈ ( 𝑇 “ 𝐴 ) ) ∧ ( ∀ 𝑢 ∈ ( 𝑇 “ 𝐴 ) ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( 𝑢 +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ∧ ∀ 𝑢 ∈ ℂ ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( 𝑢 ·ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ) ) ) |
| 62 |
20 60 61
|
mpbir2an |
⊢ ( 𝑇 “ 𝐴 ) ∈ Sℋ |