Description: Equality theorem for image. (Contributed by Mario Carneiro, 4-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | imaeq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
imaeq12d.2 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | ||
Assertion | imaeq12d | ⊢ ( 𝜑 → ( 𝐴 “ 𝐶 ) = ( 𝐵 “ 𝐷 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaeq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
2 | imaeq12d.2 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | |
3 | 1 | imaeq1d | ⊢ ( 𝜑 → ( 𝐴 “ 𝐶 ) = ( 𝐵 “ 𝐶 ) ) |
4 | 2 | imaeq2d | ⊢ ( 𝜑 → ( 𝐵 “ 𝐶 ) = ( 𝐵 “ 𝐷 ) ) |
5 | 3 4 | eqtrd | ⊢ ( 𝜑 → ( 𝐴 “ 𝐶 ) = ( 𝐵 “ 𝐷 ) ) |