Metamath Proof Explorer


Theorem imaeq12d

Description: Equality theorem for image. (Contributed by Mario Carneiro, 4-Dec-2016)

Ref Expression
Hypotheses imaeq1d.1 ( 𝜑𝐴 = 𝐵 )
imaeq12d.2 ( 𝜑𝐶 = 𝐷 )
Assertion imaeq12d ( 𝜑 → ( 𝐴𝐶 ) = ( 𝐵𝐷 ) )

Proof

Step Hyp Ref Expression
1 imaeq1d.1 ( 𝜑𝐴 = 𝐵 )
2 imaeq12d.2 ( 𝜑𝐶 = 𝐷 )
3 1 imaeq1d ( 𝜑 → ( 𝐴𝐶 ) = ( 𝐵𝐶 ) )
4 2 imaeq2d ( 𝜑 → ( 𝐵𝐶 ) = ( 𝐵𝐷 ) )
5 3 4 eqtrd ( 𝜑 → ( 𝐴𝐶 ) = ( 𝐵𝐷 ) )