Description: Equality theorem for image. (Contributed by Mario Carneiro, 4-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imaeq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| imaeq12d.2 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | ||
| Assertion | imaeq12d | ⊢ ( 𝜑 → ( 𝐴 “ 𝐶 ) = ( 𝐵 “ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 2 | imaeq12d.2 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | |
| 3 | 1 | imaeq1d | ⊢ ( 𝜑 → ( 𝐴 “ 𝐶 ) = ( 𝐵 “ 𝐶 ) ) |
| 4 | 2 | imaeq2d | ⊢ ( 𝜑 → ( 𝐵 “ 𝐶 ) = ( 𝐵 “ 𝐷 ) ) |
| 5 | 3 4 | eqtrd | ⊢ ( 𝜑 → ( 𝐴 “ 𝐶 ) = ( 𝐵 “ 𝐷 ) ) |