Metamath Proof Explorer


Theorem imaeqalov

Description: Substitute an operation value into a universal quantifier over an image. (Contributed by Scott Fenton, 20-Jan-2025)

Ref Expression
Hypothesis imaeqexov.1 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → ( 𝜑𝜓 ) )
Assertion imaeqalov ( ( 𝐹 Fn 𝐴 ∧ ( 𝐵 × 𝐶 ) ⊆ 𝐴 ) → ( ∀ 𝑥 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) 𝜑 ↔ ∀ 𝑦𝐵𝑧𝐶 𝜓 ) )

Proof

Step Hyp Ref Expression
1 imaeqexov.1 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → ( 𝜑𝜓 ) )
2 df-ral ( ∀ 𝑥 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) → 𝜑 ) )
3 ovelimab ( ( 𝐹 Fn 𝐴 ∧ ( 𝐵 × 𝐶 ) ⊆ 𝐴 ) → ( 𝑥 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) ↔ ∃ 𝑦𝐵𝑧𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) ) )
4 3 imbi1d ( ( 𝐹 Fn 𝐴 ∧ ( 𝐵 × 𝐶 ) ⊆ 𝐴 ) → ( ( 𝑥 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) → 𝜑 ) ↔ ( ∃ 𝑦𝐵𝑧𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ) )
5 4 albidv ( ( 𝐹 Fn 𝐴 ∧ ( 𝐵 × 𝐶 ) ⊆ 𝐴 ) → ( ∀ 𝑥 ( 𝑥 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) → 𝜑 ) ↔ ∀ 𝑥 ( ∃ 𝑦𝐵𝑧𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ) )
6 2 5 bitrid ( ( 𝐹 Fn 𝐴 ∧ ( 𝐵 × 𝐶 ) ⊆ 𝐴 ) → ( ∀ 𝑥 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) 𝜑 ↔ ∀ 𝑥 ( ∃ 𝑦𝐵𝑧𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ) )
7 ralcom4 ( ∀ 𝑦𝐵𝑥𝑧𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ↔ ∀ 𝑥𝑦𝐵𝑧𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) )
8 r19.23v ( ∀ 𝑧𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ↔ ( ∃ 𝑧𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) )
9 8 ralbii ( ∀ 𝑦𝐵𝑧𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ↔ ∀ 𝑦𝐵 ( ∃ 𝑧𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) )
10 r19.23v ( ∀ 𝑦𝐵 ( ∃ 𝑧𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ↔ ( ∃ 𝑦𝐵𝑧𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) )
11 9 10 bitri ( ∀ 𝑦𝐵𝑧𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ↔ ( ∃ 𝑦𝐵𝑧𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) )
12 11 albii ( ∀ 𝑥𝑦𝐵𝑧𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ↔ ∀ 𝑥 ( ∃ 𝑦𝐵𝑧𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) )
13 7 12 bitri ( ∀ 𝑦𝐵𝑥𝑧𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ↔ ∀ 𝑥 ( ∃ 𝑦𝐵𝑧𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) )
14 ralcom4 ( ∀ 𝑧𝐶𝑥 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ↔ ∀ 𝑥𝑧𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) )
15 ovex ( 𝑦 𝐹 𝑧 ) ∈ V
16 15 1 ceqsalv ( ∀ 𝑥 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ↔ 𝜓 )
17 16 ralbii ( ∀ 𝑧𝐶𝑥 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ↔ ∀ 𝑧𝐶 𝜓 )
18 14 17 bitr3i ( ∀ 𝑥𝑧𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ↔ ∀ 𝑧𝐶 𝜓 )
19 18 ralbii ( ∀ 𝑦𝐵𝑥𝑧𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ↔ ∀ 𝑦𝐵𝑧𝐶 𝜓 )
20 13 19 bitr3i ( ∀ 𝑥 ( ∃ 𝑦𝐵𝑧𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ↔ ∀ 𝑦𝐵𝑧𝐶 𝜓 )
21 6 20 bitrdi ( ( 𝐹 Fn 𝐴 ∧ ( 𝐵 × 𝐶 ) ⊆ 𝐴 ) → ( ∀ 𝑥 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) 𝜑 ↔ ∀ 𝑦𝐵𝑧𝐶 𝜓 ) )