| Step | Hyp | Ref | Expression | 
						
							| 1 |  | imaeqexov.1 | ⊢ ( 𝑥  =  ( 𝑦 𝐹 𝑧 )  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 2 |  | df-rex | ⊢ ( ∃ 𝑥  ∈  ( 𝐹  “  ( 𝐵  ×  𝐶 ) ) 𝜑  ↔  ∃ 𝑥 ( 𝑥  ∈  ( 𝐹  “  ( 𝐵  ×  𝐶 ) )  ∧  𝜑 ) ) | 
						
							| 3 |  | ovelimab | ⊢ ( ( 𝐹  Fn  𝐴  ∧  ( 𝐵  ×  𝐶 )  ⊆  𝐴 )  →  ( 𝑥  ∈  ( 𝐹  “  ( 𝐵  ×  𝐶 ) )  ↔  ∃ 𝑦  ∈  𝐵 ∃ 𝑧  ∈  𝐶 𝑥  =  ( 𝑦 𝐹 𝑧 ) ) ) | 
						
							| 4 | 3 | anbi1d | ⊢ ( ( 𝐹  Fn  𝐴  ∧  ( 𝐵  ×  𝐶 )  ⊆  𝐴 )  →  ( ( 𝑥  ∈  ( 𝐹  “  ( 𝐵  ×  𝐶 ) )  ∧  𝜑 )  ↔  ( ∃ 𝑦  ∈  𝐵 ∃ 𝑧  ∈  𝐶 𝑥  =  ( 𝑦 𝐹 𝑧 )  ∧  𝜑 ) ) ) | 
						
							| 5 |  | r19.41v | ⊢ ( ∃ 𝑧  ∈  𝐶 ( 𝑥  =  ( 𝑦 𝐹 𝑧 )  ∧  𝜑 )  ↔  ( ∃ 𝑧  ∈  𝐶 𝑥  =  ( 𝑦 𝐹 𝑧 )  ∧  𝜑 ) ) | 
						
							| 6 | 5 | rexbii | ⊢ ( ∃ 𝑦  ∈  𝐵 ∃ 𝑧  ∈  𝐶 ( 𝑥  =  ( 𝑦 𝐹 𝑧 )  ∧  𝜑 )  ↔  ∃ 𝑦  ∈  𝐵 ( ∃ 𝑧  ∈  𝐶 𝑥  =  ( 𝑦 𝐹 𝑧 )  ∧  𝜑 ) ) | 
						
							| 7 |  | r19.41v | ⊢ ( ∃ 𝑦  ∈  𝐵 ( ∃ 𝑧  ∈  𝐶 𝑥  =  ( 𝑦 𝐹 𝑧 )  ∧  𝜑 )  ↔  ( ∃ 𝑦  ∈  𝐵 ∃ 𝑧  ∈  𝐶 𝑥  =  ( 𝑦 𝐹 𝑧 )  ∧  𝜑 ) ) | 
						
							| 8 | 6 7 | bitr2i | ⊢ ( ( ∃ 𝑦  ∈  𝐵 ∃ 𝑧  ∈  𝐶 𝑥  =  ( 𝑦 𝐹 𝑧 )  ∧  𝜑 )  ↔  ∃ 𝑦  ∈  𝐵 ∃ 𝑧  ∈  𝐶 ( 𝑥  =  ( 𝑦 𝐹 𝑧 )  ∧  𝜑 ) ) | 
						
							| 9 | 4 8 | bitrdi | ⊢ ( ( 𝐹  Fn  𝐴  ∧  ( 𝐵  ×  𝐶 )  ⊆  𝐴 )  →  ( ( 𝑥  ∈  ( 𝐹  “  ( 𝐵  ×  𝐶 ) )  ∧  𝜑 )  ↔  ∃ 𝑦  ∈  𝐵 ∃ 𝑧  ∈  𝐶 ( 𝑥  =  ( 𝑦 𝐹 𝑧 )  ∧  𝜑 ) ) ) | 
						
							| 10 | 9 | exbidv | ⊢ ( ( 𝐹  Fn  𝐴  ∧  ( 𝐵  ×  𝐶 )  ⊆  𝐴 )  →  ( ∃ 𝑥 ( 𝑥  ∈  ( 𝐹  “  ( 𝐵  ×  𝐶 ) )  ∧  𝜑 )  ↔  ∃ 𝑥 ∃ 𝑦  ∈  𝐵 ∃ 𝑧  ∈  𝐶 ( 𝑥  =  ( 𝑦 𝐹 𝑧 )  ∧  𝜑 ) ) ) | 
						
							| 11 |  | rexcom4 | ⊢ ( ∃ 𝑦  ∈  𝐵 ∃ 𝑥 ∃ 𝑧  ∈  𝐶 ( 𝑥  =  ( 𝑦 𝐹 𝑧 )  ∧  𝜑 )  ↔  ∃ 𝑥 ∃ 𝑦  ∈  𝐵 ∃ 𝑧  ∈  𝐶 ( 𝑥  =  ( 𝑦 𝐹 𝑧 )  ∧  𝜑 ) ) | 
						
							| 12 |  | rexcom4 | ⊢ ( ∃ 𝑧  ∈  𝐶 ∃ 𝑥 ( 𝑥  =  ( 𝑦 𝐹 𝑧 )  ∧  𝜑 )  ↔  ∃ 𝑥 ∃ 𝑧  ∈  𝐶 ( 𝑥  =  ( 𝑦 𝐹 𝑧 )  ∧  𝜑 ) ) | 
						
							| 13 |  | ovex | ⊢ ( 𝑦 𝐹 𝑧 )  ∈  V | 
						
							| 14 | 13 1 | ceqsexv | ⊢ ( ∃ 𝑥 ( 𝑥  =  ( 𝑦 𝐹 𝑧 )  ∧  𝜑 )  ↔  𝜓 ) | 
						
							| 15 | 14 | rexbii | ⊢ ( ∃ 𝑧  ∈  𝐶 ∃ 𝑥 ( 𝑥  =  ( 𝑦 𝐹 𝑧 )  ∧  𝜑 )  ↔  ∃ 𝑧  ∈  𝐶 𝜓 ) | 
						
							| 16 | 12 15 | bitr3i | ⊢ ( ∃ 𝑥 ∃ 𝑧  ∈  𝐶 ( 𝑥  =  ( 𝑦 𝐹 𝑧 )  ∧  𝜑 )  ↔  ∃ 𝑧  ∈  𝐶 𝜓 ) | 
						
							| 17 | 16 | rexbii | ⊢ ( ∃ 𝑦  ∈  𝐵 ∃ 𝑥 ∃ 𝑧  ∈  𝐶 ( 𝑥  =  ( 𝑦 𝐹 𝑧 )  ∧  𝜑 )  ↔  ∃ 𝑦  ∈  𝐵 ∃ 𝑧  ∈  𝐶 𝜓 ) | 
						
							| 18 | 11 17 | bitr3i | ⊢ ( ∃ 𝑥 ∃ 𝑦  ∈  𝐵 ∃ 𝑧  ∈  𝐶 ( 𝑥  =  ( 𝑦 𝐹 𝑧 )  ∧  𝜑 )  ↔  ∃ 𝑦  ∈  𝐵 ∃ 𝑧  ∈  𝐶 𝜓 ) | 
						
							| 19 | 10 18 | bitrdi | ⊢ ( ( 𝐹  Fn  𝐴  ∧  ( 𝐵  ×  𝐶 )  ⊆  𝐴 )  →  ( ∃ 𝑥 ( 𝑥  ∈  ( 𝐹  “  ( 𝐵  ×  𝐶 ) )  ∧  𝜑 )  ↔  ∃ 𝑦  ∈  𝐵 ∃ 𝑧  ∈  𝐶 𝜓 ) ) | 
						
							| 20 | 2 19 | bitrid | ⊢ ( ( 𝐹  Fn  𝐴  ∧  ( 𝐵  ×  𝐶 )  ⊆  𝐴 )  →  ( ∃ 𝑥  ∈  ( 𝐹  “  ( 𝐵  ×  𝐶 ) ) 𝜑  ↔  ∃ 𝑦  ∈  𝐵 ∃ 𝑧  ∈  𝐶 𝜓 ) ) |