| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imaeqsexvOLD.1 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑦 ) → ( 𝜑 ↔ 𝜓 ) ) |
| 2 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ ( 𝐹 “ 𝐵 ) 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ ( 𝐹 “ 𝐵 ) ∧ 𝜑 ) ) |
| 3 |
|
fvelimab |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑥 ∈ ( 𝐹 “ 𝐵 ) ↔ ∃ 𝑦 ∈ 𝐵 ( 𝐹 ‘ 𝑦 ) = 𝑥 ) ) |
| 4 |
3
|
anbi1d |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝑥 ∈ ( 𝐹 “ 𝐵 ) ∧ 𝜑 ) ↔ ( ∃ 𝑦 ∈ 𝐵 ( 𝐹 ‘ 𝑦 ) = 𝑥 ∧ 𝜑 ) ) ) |
| 5 |
4
|
exbidv |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ∃ 𝑥 ( 𝑥 ∈ ( 𝐹 “ 𝐵 ) ∧ 𝜑 ) ↔ ∃ 𝑥 ( ∃ 𝑦 ∈ 𝐵 ( 𝐹 ‘ 𝑦 ) = 𝑥 ∧ 𝜑 ) ) ) |
| 6 |
2 5
|
bitrid |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ∃ 𝑥 ∈ ( 𝐹 “ 𝐵 ) 𝜑 ↔ ∃ 𝑥 ( ∃ 𝑦 ∈ 𝐵 ( 𝐹 ‘ 𝑦 ) = 𝑥 ∧ 𝜑 ) ) ) |
| 7 |
|
rexcom4 |
⊢ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ( ( 𝐹 ‘ 𝑦 ) = 𝑥 ∧ 𝜑 ) ↔ ∃ 𝑥 ∃ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑦 ) = 𝑥 ∧ 𝜑 ) ) |
| 8 |
|
eqcom |
⊢ ( ( 𝐹 ‘ 𝑦 ) = 𝑥 ↔ 𝑥 = ( 𝐹 ‘ 𝑦 ) ) |
| 9 |
8
|
anbi1i |
⊢ ( ( ( 𝐹 ‘ 𝑦 ) = 𝑥 ∧ 𝜑 ) ↔ ( 𝑥 = ( 𝐹 ‘ 𝑦 ) ∧ 𝜑 ) ) |
| 10 |
9
|
exbii |
⊢ ( ∃ 𝑥 ( ( 𝐹 ‘ 𝑦 ) = 𝑥 ∧ 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 = ( 𝐹 ‘ 𝑦 ) ∧ 𝜑 ) ) |
| 11 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑦 ) ∈ V |
| 12 |
11 1
|
ceqsexv |
⊢ ( ∃ 𝑥 ( 𝑥 = ( 𝐹 ‘ 𝑦 ) ∧ 𝜑 ) ↔ 𝜓 ) |
| 13 |
10 12
|
bitri |
⊢ ( ∃ 𝑥 ( ( 𝐹 ‘ 𝑦 ) = 𝑥 ∧ 𝜑 ) ↔ 𝜓 ) |
| 14 |
13
|
rexbii |
⊢ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ( ( 𝐹 ‘ 𝑦 ) = 𝑥 ∧ 𝜑 ) ↔ ∃ 𝑦 ∈ 𝐵 𝜓 ) |
| 15 |
|
r19.41v |
⊢ ( ∃ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑦 ) = 𝑥 ∧ 𝜑 ) ↔ ( ∃ 𝑦 ∈ 𝐵 ( 𝐹 ‘ 𝑦 ) = 𝑥 ∧ 𝜑 ) ) |
| 16 |
15
|
exbii |
⊢ ( ∃ 𝑥 ∃ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑦 ) = 𝑥 ∧ 𝜑 ) ↔ ∃ 𝑥 ( ∃ 𝑦 ∈ 𝐵 ( 𝐹 ‘ 𝑦 ) = 𝑥 ∧ 𝜑 ) ) |
| 17 |
7 14 16
|
3bitr3ri |
⊢ ( ∃ 𝑥 ( ∃ 𝑦 ∈ 𝐵 ( 𝐹 ‘ 𝑦 ) = 𝑥 ∧ 𝜑 ) ↔ ∃ 𝑦 ∈ 𝐵 𝜓 ) |
| 18 |
6 17
|
bitrdi |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ∃ 𝑥 ∈ ( 𝐹 “ 𝐵 ) 𝜑 ↔ ∃ 𝑦 ∈ 𝐵 𝜓 ) ) |