Metamath Proof Explorer


Theorem imaexd

Description: The image of a set is a set. Deduction version of imaexg . (Contributed by Thierry Arnoux, 14-Feb-2025)

Ref Expression
Hypothesis rnexd.1 ( 𝜑𝐴𝑉 )
Assertion imaexd ( 𝜑 → ( 𝐴𝐵 ) ∈ V )

Proof

Step Hyp Ref Expression
1 rnexd.1 ( 𝜑𝐴𝑉 )
2 imaexg ( 𝐴𝑉 → ( 𝐴𝐵 ) ∈ V )
3 1 2 syl ( 𝜑 → ( 𝐴𝐵 ) ∈ V )