Metamath Proof Explorer


Theorem imaexi

Description: The image of a set is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Proof shortened by SN, 27-Apr-2025)

Ref Expression
Hypothesis imaexi.1 𝐴𝑉
Assertion imaexi ( 𝐴𝐵 ) ∈ V

Proof

Step Hyp Ref Expression
1 imaexi.1 𝐴𝑉
2 1 elexi 𝐴 ∈ V
3 2 imaex ( 𝐴𝐵 ) ∈ V