Step |
Hyp |
Ref |
Expression |
1 |
|
imaeq2 |
⊢ ( 𝑥 = ∅ → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ ∅ ) ) |
2 |
1
|
eleq1d |
⊢ ( 𝑥 = ∅ → ( ( 𝐹 “ 𝑥 ) ∈ Fin ↔ ( 𝐹 “ ∅ ) ∈ Fin ) ) |
3 |
2
|
imbi2d |
⊢ ( 𝑥 = ∅ → ( ( Fun 𝐹 → ( 𝐹 “ 𝑥 ) ∈ Fin ) ↔ ( Fun 𝐹 → ( 𝐹 “ ∅ ) ∈ Fin ) ) ) |
4 |
|
imaeq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑦 ) ) |
5 |
4
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 “ 𝑥 ) ∈ Fin ↔ ( 𝐹 “ 𝑦 ) ∈ Fin ) ) |
6 |
5
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( Fun 𝐹 → ( 𝐹 “ 𝑥 ) ∈ Fin ) ↔ ( Fun 𝐹 → ( 𝐹 “ 𝑦 ) ∈ Fin ) ) ) |
7 |
|
imaeq2 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ ( 𝑦 ∪ { 𝑧 } ) ) ) |
8 |
7
|
eleq1d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝐹 “ 𝑥 ) ∈ Fin ↔ ( 𝐹 “ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) ) |
9 |
8
|
imbi2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( Fun 𝐹 → ( 𝐹 “ 𝑥 ) ∈ Fin ) ↔ ( Fun 𝐹 → ( 𝐹 “ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) ) ) |
10 |
|
imaeq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑋 ) ) |
11 |
10
|
eleq1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 “ 𝑥 ) ∈ Fin ↔ ( 𝐹 “ 𝑋 ) ∈ Fin ) ) |
12 |
11
|
imbi2d |
⊢ ( 𝑥 = 𝑋 → ( ( Fun 𝐹 → ( 𝐹 “ 𝑥 ) ∈ Fin ) ↔ ( Fun 𝐹 → ( 𝐹 “ 𝑋 ) ∈ Fin ) ) ) |
13 |
|
ima0 |
⊢ ( 𝐹 “ ∅ ) = ∅ |
14 |
|
0fin |
⊢ ∅ ∈ Fin |
15 |
13 14
|
eqeltri |
⊢ ( 𝐹 “ ∅ ) ∈ Fin |
16 |
15
|
a1i |
⊢ ( Fun 𝐹 → ( 𝐹 “ ∅ ) ∈ Fin ) |
17 |
|
funfn |
⊢ ( Fun 𝐹 ↔ 𝐹 Fn dom 𝐹 ) |
18 |
|
fnsnfv |
⊢ ( ( 𝐹 Fn dom 𝐹 ∧ 𝑧 ∈ dom 𝐹 ) → { ( 𝐹 ‘ 𝑧 ) } = ( 𝐹 “ { 𝑧 } ) ) |
19 |
17 18
|
sylanb |
⊢ ( ( Fun 𝐹 ∧ 𝑧 ∈ dom 𝐹 ) → { ( 𝐹 ‘ 𝑧 ) } = ( 𝐹 “ { 𝑧 } ) ) |
20 |
|
snfi |
⊢ { ( 𝐹 ‘ 𝑧 ) } ∈ Fin |
21 |
19 20
|
eqeltrrdi |
⊢ ( ( Fun 𝐹 ∧ 𝑧 ∈ dom 𝐹 ) → ( 𝐹 “ { 𝑧 } ) ∈ Fin ) |
22 |
|
ndmima |
⊢ ( ¬ 𝑧 ∈ dom 𝐹 → ( 𝐹 “ { 𝑧 } ) = ∅ ) |
23 |
22 14
|
eqeltrdi |
⊢ ( ¬ 𝑧 ∈ dom 𝐹 → ( 𝐹 “ { 𝑧 } ) ∈ Fin ) |
24 |
23
|
adantl |
⊢ ( ( Fun 𝐹 ∧ ¬ 𝑧 ∈ dom 𝐹 ) → ( 𝐹 “ { 𝑧 } ) ∈ Fin ) |
25 |
21 24
|
pm2.61dan |
⊢ ( Fun 𝐹 → ( 𝐹 “ { 𝑧 } ) ∈ Fin ) |
26 |
|
imaundi |
⊢ ( 𝐹 “ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( 𝐹 “ 𝑦 ) ∪ ( 𝐹 “ { 𝑧 } ) ) |
27 |
|
unfi |
⊢ ( ( ( 𝐹 “ 𝑦 ) ∈ Fin ∧ ( 𝐹 “ { 𝑧 } ) ∈ Fin ) → ( ( 𝐹 “ 𝑦 ) ∪ ( 𝐹 “ { 𝑧 } ) ) ∈ Fin ) |
28 |
26 27
|
eqeltrid |
⊢ ( ( ( 𝐹 “ 𝑦 ) ∈ Fin ∧ ( 𝐹 “ { 𝑧 } ) ∈ Fin ) → ( 𝐹 “ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) |
29 |
25 28
|
sylan2 |
⊢ ( ( ( 𝐹 “ 𝑦 ) ∈ Fin ∧ Fun 𝐹 ) → ( 𝐹 “ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) |
30 |
29
|
expcom |
⊢ ( Fun 𝐹 → ( ( 𝐹 “ 𝑦 ) ∈ Fin → ( 𝐹 “ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) ) |
31 |
30
|
a2i |
⊢ ( ( Fun 𝐹 → ( 𝐹 “ 𝑦 ) ∈ Fin ) → ( Fun 𝐹 → ( 𝐹 “ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) ) |
32 |
31
|
a1i |
⊢ ( 𝑦 ∈ Fin → ( ( Fun 𝐹 → ( 𝐹 “ 𝑦 ) ∈ Fin ) → ( Fun 𝐹 → ( 𝐹 “ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) ) ) |
33 |
3 6 9 12 16 32
|
findcard2 |
⊢ ( 𝑋 ∈ Fin → ( Fun 𝐹 → ( 𝐹 “ 𝑋 ) ∈ Fin ) ) |
34 |
33
|
impcom |
⊢ ( ( Fun 𝐹 ∧ 𝑋 ∈ Fin ) → ( 𝐹 “ 𝑋 ) ∈ Fin ) |