Step |
Hyp |
Ref |
Expression |
1 |
|
imadmres |
⊢ ( 𝐹 “ dom ( 𝐹 ↾ 𝑋 ) ) = ( 𝐹 “ 𝑋 ) |
2 |
|
simpr |
⊢ ( ( Fun 𝐹 ∧ 𝑋 ∈ Fin ) → 𝑋 ∈ Fin ) |
3 |
|
dmres |
⊢ dom ( 𝐹 ↾ 𝑋 ) = ( 𝑋 ∩ dom 𝐹 ) |
4 |
|
inss1 |
⊢ ( 𝑋 ∩ dom 𝐹 ) ⊆ 𝑋 |
5 |
3 4
|
eqsstri |
⊢ dom ( 𝐹 ↾ 𝑋 ) ⊆ 𝑋 |
6 |
|
ssfi |
⊢ ( ( 𝑋 ∈ Fin ∧ dom ( 𝐹 ↾ 𝑋 ) ⊆ 𝑋 ) → dom ( 𝐹 ↾ 𝑋 ) ∈ Fin ) |
7 |
2 5 6
|
sylancl |
⊢ ( ( Fun 𝐹 ∧ 𝑋 ∈ Fin ) → dom ( 𝐹 ↾ 𝑋 ) ∈ Fin ) |
8 |
|
resss |
⊢ ( 𝐹 ↾ 𝑋 ) ⊆ 𝐹 |
9 |
|
dmss |
⊢ ( ( 𝐹 ↾ 𝑋 ) ⊆ 𝐹 → dom ( 𝐹 ↾ 𝑋 ) ⊆ dom 𝐹 ) |
10 |
8 9
|
mp1i |
⊢ ( ( Fun 𝐹 ∧ 𝑋 ∈ Fin ) → dom ( 𝐹 ↾ 𝑋 ) ⊆ dom 𝐹 ) |
11 |
|
fores |
⊢ ( ( Fun 𝐹 ∧ dom ( 𝐹 ↾ 𝑋 ) ⊆ dom 𝐹 ) → ( 𝐹 ↾ dom ( 𝐹 ↾ 𝑋 ) ) : dom ( 𝐹 ↾ 𝑋 ) –onto→ ( 𝐹 “ dom ( 𝐹 ↾ 𝑋 ) ) ) |
12 |
10 11
|
syldan |
⊢ ( ( Fun 𝐹 ∧ 𝑋 ∈ Fin ) → ( 𝐹 ↾ dom ( 𝐹 ↾ 𝑋 ) ) : dom ( 𝐹 ↾ 𝑋 ) –onto→ ( 𝐹 “ dom ( 𝐹 ↾ 𝑋 ) ) ) |
13 |
|
fofi |
⊢ ( ( dom ( 𝐹 ↾ 𝑋 ) ∈ Fin ∧ ( 𝐹 ↾ dom ( 𝐹 ↾ 𝑋 ) ) : dom ( 𝐹 ↾ 𝑋 ) –onto→ ( 𝐹 “ dom ( 𝐹 ↾ 𝑋 ) ) ) → ( 𝐹 “ dom ( 𝐹 ↾ 𝑋 ) ) ∈ Fin ) |
14 |
7 12 13
|
syl2anc |
⊢ ( ( Fun 𝐹 ∧ 𝑋 ∈ Fin ) → ( 𝐹 “ dom ( 𝐹 ↾ 𝑋 ) ) ∈ Fin ) |
15 |
1 14
|
eqeltrrid |
⊢ ( ( Fun 𝐹 ∧ 𝑋 ∈ Fin ) → ( 𝐹 “ 𝑋 ) ∈ Fin ) |