| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funimage |
⊢ Fun Image 𝑅 |
| 2 |
|
funrel |
⊢ ( Fun Image 𝑅 → Rel Image 𝑅 ) |
| 3 |
1 2
|
ax-mp |
⊢ Rel Image 𝑅 |
| 4 |
|
mptrel |
⊢ Rel ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) |
| 5 |
|
vex |
⊢ 𝑦 ∈ V |
| 6 |
|
vex |
⊢ 𝑧 ∈ V |
| 7 |
5 6
|
breldm |
⊢ ( 𝑦 Image 𝑅 𝑧 → 𝑦 ∈ dom Image 𝑅 ) |
| 8 |
|
fnimage |
⊢ Image 𝑅 Fn { 𝑥 ∣ ( 𝑅 “ 𝑥 ) ∈ V } |
| 9 |
8
|
fndmi |
⊢ dom Image 𝑅 = { 𝑥 ∣ ( 𝑅 “ 𝑥 ) ∈ V } |
| 10 |
7 9
|
eleqtrdi |
⊢ ( 𝑦 Image 𝑅 𝑧 → 𝑦 ∈ { 𝑥 ∣ ( 𝑅 “ 𝑥 ) ∈ V } ) |
| 11 |
5 6
|
breldm |
⊢ ( 𝑦 ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) 𝑧 → 𝑦 ∈ dom ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) ) |
| 12 |
|
eqid |
⊢ ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) = ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) |
| 13 |
12
|
dmmpt |
⊢ dom ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) = { 𝑥 ∈ V ∣ ( 𝑅 “ 𝑥 ) ∈ V } |
| 14 |
|
rabab |
⊢ { 𝑥 ∈ V ∣ ( 𝑅 “ 𝑥 ) ∈ V } = { 𝑥 ∣ ( 𝑅 “ 𝑥 ) ∈ V } |
| 15 |
13 14
|
eqtri |
⊢ dom ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) = { 𝑥 ∣ ( 𝑅 “ 𝑥 ) ∈ V } |
| 16 |
11 15
|
eleqtrdi |
⊢ ( 𝑦 ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) 𝑧 → 𝑦 ∈ { 𝑥 ∣ ( 𝑅 “ 𝑥 ) ∈ V } ) |
| 17 |
|
imaeq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑅 “ 𝑥 ) = ( 𝑅 “ 𝑦 ) ) |
| 18 |
17
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑅 “ 𝑥 ) ∈ V ↔ ( 𝑅 “ 𝑦 ) ∈ V ) ) |
| 19 |
5 18
|
elab |
⊢ ( 𝑦 ∈ { 𝑥 ∣ ( 𝑅 “ 𝑥 ) ∈ V } ↔ ( 𝑅 “ 𝑦 ) ∈ V ) |
| 20 |
5 6
|
brimage |
⊢ ( 𝑦 Image 𝑅 𝑧 ↔ 𝑧 = ( 𝑅 “ 𝑦 ) ) |
| 21 |
|
eqcom |
⊢ ( 𝑧 = ( 𝑅 “ 𝑦 ) ↔ ( 𝑅 “ 𝑦 ) = 𝑧 ) |
| 22 |
17 12
|
fvmptg |
⊢ ( ( 𝑦 ∈ V ∧ ( 𝑅 “ 𝑦 ) ∈ V ) → ( ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) ‘ 𝑦 ) = ( 𝑅 “ 𝑦 ) ) |
| 23 |
5 22
|
mpan |
⊢ ( ( 𝑅 “ 𝑦 ) ∈ V → ( ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) ‘ 𝑦 ) = ( 𝑅 “ 𝑦 ) ) |
| 24 |
23
|
eqeq1d |
⊢ ( ( 𝑅 “ 𝑦 ) ∈ V → ( ( ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) ‘ 𝑦 ) = 𝑧 ↔ ( 𝑅 “ 𝑦 ) = 𝑧 ) ) |
| 25 |
|
funmpt |
⊢ Fun ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) |
| 26 |
|
df-fn |
⊢ ( ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) Fn { 𝑥 ∣ ( 𝑅 “ 𝑥 ) ∈ V } ↔ ( Fun ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) ∧ dom ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) = { 𝑥 ∣ ( 𝑅 “ 𝑥 ) ∈ V } ) ) |
| 27 |
25 15 26
|
mpbir2an |
⊢ ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) Fn { 𝑥 ∣ ( 𝑅 “ 𝑥 ) ∈ V } |
| 28 |
19
|
biimpri |
⊢ ( ( 𝑅 “ 𝑦 ) ∈ V → 𝑦 ∈ { 𝑥 ∣ ( 𝑅 “ 𝑥 ) ∈ V } ) |
| 29 |
|
fnbrfvb |
⊢ ( ( ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) Fn { 𝑥 ∣ ( 𝑅 “ 𝑥 ) ∈ V } ∧ 𝑦 ∈ { 𝑥 ∣ ( 𝑅 “ 𝑥 ) ∈ V } ) → ( ( ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) ‘ 𝑦 ) = 𝑧 ↔ 𝑦 ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) 𝑧 ) ) |
| 30 |
27 28 29
|
sylancr |
⊢ ( ( 𝑅 “ 𝑦 ) ∈ V → ( ( ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) ‘ 𝑦 ) = 𝑧 ↔ 𝑦 ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) 𝑧 ) ) |
| 31 |
24 30
|
bitr3d |
⊢ ( ( 𝑅 “ 𝑦 ) ∈ V → ( ( 𝑅 “ 𝑦 ) = 𝑧 ↔ 𝑦 ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) 𝑧 ) ) |
| 32 |
21 31
|
bitrid |
⊢ ( ( 𝑅 “ 𝑦 ) ∈ V → ( 𝑧 = ( 𝑅 “ 𝑦 ) ↔ 𝑦 ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) 𝑧 ) ) |
| 33 |
20 32
|
bitrid |
⊢ ( ( 𝑅 “ 𝑦 ) ∈ V → ( 𝑦 Image 𝑅 𝑧 ↔ 𝑦 ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) 𝑧 ) ) |
| 34 |
19 33
|
sylbi |
⊢ ( 𝑦 ∈ { 𝑥 ∣ ( 𝑅 “ 𝑥 ) ∈ V } → ( 𝑦 Image 𝑅 𝑧 ↔ 𝑦 ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) 𝑧 ) ) |
| 35 |
10 16 34
|
pm5.21nii |
⊢ ( 𝑦 Image 𝑅 𝑧 ↔ 𝑦 ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) 𝑧 ) |
| 36 |
3 4 35
|
eqbrriv |
⊢ Image 𝑅 = ( 𝑥 ∈ V ↦ ( 𝑅 “ 𝑥 ) ) |