Step |
Hyp |
Ref |
Expression |
1 |
|
df-res |
⊢ ( ( 𝐺 ∩ ( 𝐴 × 𝐵 ) ) ↾ 𝑌 ) = ( ( 𝐺 ∩ ( 𝐴 × 𝐵 ) ) ∩ ( 𝑌 × V ) ) |
2 |
1
|
rneqi |
⊢ ran ( ( 𝐺 ∩ ( 𝐴 × 𝐵 ) ) ↾ 𝑌 ) = ran ( ( 𝐺 ∩ ( 𝐴 × 𝐵 ) ) ∩ ( 𝑌 × V ) ) |
3 |
|
df-ima |
⊢ ( ( 𝐺 ∩ ( 𝐴 × 𝐵 ) ) “ 𝑌 ) = ran ( ( 𝐺 ∩ ( 𝐴 × 𝐵 ) ) ↾ 𝑌 ) |
4 |
|
df-ima |
⊢ ( 𝐺 “ ( 𝑌 ∩ 𝐴 ) ) = ran ( 𝐺 ↾ ( 𝑌 ∩ 𝐴 ) ) |
5 |
|
df-res |
⊢ ( 𝐺 ↾ ( 𝑌 ∩ 𝐴 ) ) = ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) |
6 |
5
|
rneqi |
⊢ ran ( 𝐺 ↾ ( 𝑌 ∩ 𝐴 ) ) = ran ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) |
7 |
4 6
|
eqtri |
⊢ ( 𝐺 “ ( 𝑌 ∩ 𝐴 ) ) = ran ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) |
8 |
7
|
ineq1i |
⊢ ( ( 𝐺 “ ( 𝑌 ∩ 𝐴 ) ) ∩ 𝐵 ) = ( ran ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ∩ 𝐵 ) |
9 |
|
cnvin |
⊢ ◡ ( ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ∩ ( V × 𝐵 ) ) = ( ◡ ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ∩ ◡ ( V × 𝐵 ) ) |
10 |
|
inxp |
⊢ ( ( 𝐴 × V ) ∩ ( V × 𝐵 ) ) = ( ( 𝐴 ∩ V ) × ( V ∩ 𝐵 ) ) |
11 |
|
inv1 |
⊢ ( 𝐴 ∩ V ) = 𝐴 |
12 |
|
incom |
⊢ ( V ∩ 𝐵 ) = ( 𝐵 ∩ V ) |
13 |
|
inv1 |
⊢ ( 𝐵 ∩ V ) = 𝐵 |
14 |
12 13
|
eqtri |
⊢ ( V ∩ 𝐵 ) = 𝐵 |
15 |
11 14
|
xpeq12i |
⊢ ( ( 𝐴 ∩ V ) × ( V ∩ 𝐵 ) ) = ( 𝐴 × 𝐵 ) |
16 |
10 15
|
eqtr2i |
⊢ ( 𝐴 × 𝐵 ) = ( ( 𝐴 × V ) ∩ ( V × 𝐵 ) ) |
17 |
16
|
ineq2i |
⊢ ( ( 𝐺 ∩ ( 𝑌 × V ) ) ∩ ( 𝐴 × 𝐵 ) ) = ( ( 𝐺 ∩ ( 𝑌 × V ) ) ∩ ( ( 𝐴 × V ) ∩ ( V × 𝐵 ) ) ) |
18 |
|
in32 |
⊢ ( ( 𝐺 ∩ ( 𝐴 × 𝐵 ) ) ∩ ( 𝑌 × V ) ) = ( ( 𝐺 ∩ ( 𝑌 × V ) ) ∩ ( 𝐴 × 𝐵 ) ) |
19 |
|
xpindir |
⊢ ( ( 𝑌 ∩ 𝐴 ) × V ) = ( ( 𝑌 × V ) ∩ ( 𝐴 × V ) ) |
20 |
19
|
ineq2i |
⊢ ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) = ( 𝐺 ∩ ( ( 𝑌 × V ) ∩ ( 𝐴 × V ) ) ) |
21 |
|
inass |
⊢ ( ( 𝐺 ∩ ( 𝑌 × V ) ) ∩ ( 𝐴 × V ) ) = ( 𝐺 ∩ ( ( 𝑌 × V ) ∩ ( 𝐴 × V ) ) ) |
22 |
20 21
|
eqtr4i |
⊢ ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) = ( ( 𝐺 ∩ ( 𝑌 × V ) ) ∩ ( 𝐴 × V ) ) |
23 |
22
|
ineq1i |
⊢ ( ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ∩ ( V × 𝐵 ) ) = ( ( ( 𝐺 ∩ ( 𝑌 × V ) ) ∩ ( 𝐴 × V ) ) ∩ ( V × 𝐵 ) ) |
24 |
|
inass |
⊢ ( ( ( 𝐺 ∩ ( 𝑌 × V ) ) ∩ ( 𝐴 × V ) ) ∩ ( V × 𝐵 ) ) = ( ( 𝐺 ∩ ( 𝑌 × V ) ) ∩ ( ( 𝐴 × V ) ∩ ( V × 𝐵 ) ) ) |
25 |
23 24
|
eqtri |
⊢ ( ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ∩ ( V × 𝐵 ) ) = ( ( 𝐺 ∩ ( 𝑌 × V ) ) ∩ ( ( 𝐴 × V ) ∩ ( V × 𝐵 ) ) ) |
26 |
17 18 25
|
3eqtr4i |
⊢ ( ( 𝐺 ∩ ( 𝐴 × 𝐵 ) ) ∩ ( 𝑌 × V ) ) = ( ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ∩ ( V × 𝐵 ) ) |
27 |
26
|
cnveqi |
⊢ ◡ ( ( 𝐺 ∩ ( 𝐴 × 𝐵 ) ) ∩ ( 𝑌 × V ) ) = ◡ ( ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ∩ ( V × 𝐵 ) ) |
28 |
|
df-res |
⊢ ( ◡ ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ↾ 𝐵 ) = ( ◡ ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ∩ ( 𝐵 × V ) ) |
29 |
|
cnvxp |
⊢ ◡ ( V × 𝐵 ) = ( 𝐵 × V ) |
30 |
29
|
ineq2i |
⊢ ( ◡ ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ∩ ◡ ( V × 𝐵 ) ) = ( ◡ ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ∩ ( 𝐵 × V ) ) |
31 |
28 30
|
eqtr4i |
⊢ ( ◡ ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ↾ 𝐵 ) = ( ◡ ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ∩ ◡ ( V × 𝐵 ) ) |
32 |
9 27 31
|
3eqtr4ri |
⊢ ( ◡ ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ↾ 𝐵 ) = ◡ ( ( 𝐺 ∩ ( 𝐴 × 𝐵 ) ) ∩ ( 𝑌 × V ) ) |
33 |
32
|
dmeqi |
⊢ dom ( ◡ ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ↾ 𝐵 ) = dom ◡ ( ( 𝐺 ∩ ( 𝐴 × 𝐵 ) ) ∩ ( 𝑌 × V ) ) |
34 |
|
incom |
⊢ ( 𝐵 ∩ dom ◡ ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ) = ( dom ◡ ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ∩ 𝐵 ) |
35 |
|
dmres |
⊢ dom ( ◡ ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ↾ 𝐵 ) = ( 𝐵 ∩ dom ◡ ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ) |
36 |
|
df-rn |
⊢ ran ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) = dom ◡ ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) |
37 |
36
|
ineq1i |
⊢ ( ran ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ∩ 𝐵 ) = ( dom ◡ ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ∩ 𝐵 ) |
38 |
34 35 37
|
3eqtr4ri |
⊢ ( ran ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ∩ 𝐵 ) = dom ( ◡ ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ↾ 𝐵 ) |
39 |
|
df-rn |
⊢ ran ( ( 𝐺 ∩ ( 𝐴 × 𝐵 ) ) ∩ ( 𝑌 × V ) ) = dom ◡ ( ( 𝐺 ∩ ( 𝐴 × 𝐵 ) ) ∩ ( 𝑌 × V ) ) |
40 |
33 38 39
|
3eqtr4ri |
⊢ ran ( ( 𝐺 ∩ ( 𝐴 × 𝐵 ) ) ∩ ( 𝑌 × V ) ) = ( ran ( 𝐺 ∩ ( ( 𝑌 ∩ 𝐴 ) × V ) ) ∩ 𝐵 ) |
41 |
8 40
|
eqtr4i |
⊢ ( ( 𝐺 “ ( 𝑌 ∩ 𝐴 ) ) ∩ 𝐵 ) = ran ( ( 𝐺 ∩ ( 𝐴 × 𝐵 ) ) ∩ ( 𝑌 × V ) ) |
42 |
2 3 41
|
3eqtr4i |
⊢ ( ( 𝐺 ∩ ( 𝐴 × 𝐵 ) ) “ 𝑌 ) = ( ( 𝐺 “ ( 𝑌 ∩ 𝐴 ) ) ∩ 𝐵 ) |