| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-res | ⊢ ( ( 𝐺  ∩  ( 𝐴  ×  𝐵 ) )  ↾  𝑌 )  =  ( ( 𝐺  ∩  ( 𝐴  ×  𝐵 ) )  ∩  ( 𝑌  ×  V ) ) | 
						
							| 2 | 1 | rneqi | ⊢ ran  ( ( 𝐺  ∩  ( 𝐴  ×  𝐵 ) )  ↾  𝑌 )  =  ran  ( ( 𝐺  ∩  ( 𝐴  ×  𝐵 ) )  ∩  ( 𝑌  ×  V ) ) | 
						
							| 3 |  | df-ima | ⊢ ( ( 𝐺  ∩  ( 𝐴  ×  𝐵 ) )  “  𝑌 )  =  ran  ( ( 𝐺  ∩  ( 𝐴  ×  𝐵 ) )  ↾  𝑌 ) | 
						
							| 4 |  | df-ima | ⊢ ( 𝐺  “  ( 𝑌  ∩  𝐴 ) )  =  ran  ( 𝐺  ↾  ( 𝑌  ∩  𝐴 ) ) | 
						
							| 5 |  | df-res | ⊢ ( 𝐺  ↾  ( 𝑌  ∩  𝐴 ) )  =  ( 𝐺  ∩  ( ( 𝑌  ∩  𝐴 )  ×  V ) ) | 
						
							| 6 | 5 | rneqi | ⊢ ran  ( 𝐺  ↾  ( 𝑌  ∩  𝐴 ) )  =  ran  ( 𝐺  ∩  ( ( 𝑌  ∩  𝐴 )  ×  V ) ) | 
						
							| 7 | 4 6 | eqtri | ⊢ ( 𝐺  “  ( 𝑌  ∩  𝐴 ) )  =  ran  ( 𝐺  ∩  ( ( 𝑌  ∩  𝐴 )  ×  V ) ) | 
						
							| 8 | 7 | ineq1i | ⊢ ( ( 𝐺  “  ( 𝑌  ∩  𝐴 ) )  ∩  𝐵 )  =  ( ran  ( 𝐺  ∩  ( ( 𝑌  ∩  𝐴 )  ×  V ) )  ∩  𝐵 ) | 
						
							| 9 |  | cnvin | ⊢ ◡ ( ( 𝐺  ∩  ( ( 𝑌  ∩  𝐴 )  ×  V ) )  ∩  ( V  ×  𝐵 ) )  =  ( ◡ ( 𝐺  ∩  ( ( 𝑌  ∩  𝐴 )  ×  V ) )  ∩  ◡ ( V  ×  𝐵 ) ) | 
						
							| 10 |  | inxp | ⊢ ( ( 𝐴  ×  V )  ∩  ( V  ×  𝐵 ) )  =  ( ( 𝐴  ∩  V )  ×  ( V  ∩  𝐵 ) ) | 
						
							| 11 |  | inv1 | ⊢ ( 𝐴  ∩  V )  =  𝐴 | 
						
							| 12 |  | incom | ⊢ ( V  ∩  𝐵 )  =  ( 𝐵  ∩  V ) | 
						
							| 13 |  | inv1 | ⊢ ( 𝐵  ∩  V )  =  𝐵 | 
						
							| 14 | 12 13 | eqtri | ⊢ ( V  ∩  𝐵 )  =  𝐵 | 
						
							| 15 | 11 14 | xpeq12i | ⊢ ( ( 𝐴  ∩  V )  ×  ( V  ∩  𝐵 ) )  =  ( 𝐴  ×  𝐵 ) | 
						
							| 16 | 10 15 | eqtr2i | ⊢ ( 𝐴  ×  𝐵 )  =  ( ( 𝐴  ×  V )  ∩  ( V  ×  𝐵 ) ) | 
						
							| 17 | 16 | ineq2i | ⊢ ( ( 𝐺  ∩  ( 𝑌  ×  V ) )  ∩  ( 𝐴  ×  𝐵 ) )  =  ( ( 𝐺  ∩  ( 𝑌  ×  V ) )  ∩  ( ( 𝐴  ×  V )  ∩  ( V  ×  𝐵 ) ) ) | 
						
							| 18 |  | in32 | ⊢ ( ( 𝐺  ∩  ( 𝐴  ×  𝐵 ) )  ∩  ( 𝑌  ×  V ) )  =  ( ( 𝐺  ∩  ( 𝑌  ×  V ) )  ∩  ( 𝐴  ×  𝐵 ) ) | 
						
							| 19 |  | xpindir | ⊢ ( ( 𝑌  ∩  𝐴 )  ×  V )  =  ( ( 𝑌  ×  V )  ∩  ( 𝐴  ×  V ) ) | 
						
							| 20 | 19 | ineq2i | ⊢ ( 𝐺  ∩  ( ( 𝑌  ∩  𝐴 )  ×  V ) )  =  ( 𝐺  ∩  ( ( 𝑌  ×  V )  ∩  ( 𝐴  ×  V ) ) ) | 
						
							| 21 |  | inass | ⊢ ( ( 𝐺  ∩  ( 𝑌  ×  V ) )  ∩  ( 𝐴  ×  V ) )  =  ( 𝐺  ∩  ( ( 𝑌  ×  V )  ∩  ( 𝐴  ×  V ) ) ) | 
						
							| 22 | 20 21 | eqtr4i | ⊢ ( 𝐺  ∩  ( ( 𝑌  ∩  𝐴 )  ×  V ) )  =  ( ( 𝐺  ∩  ( 𝑌  ×  V ) )  ∩  ( 𝐴  ×  V ) ) | 
						
							| 23 | 22 | ineq1i | ⊢ ( ( 𝐺  ∩  ( ( 𝑌  ∩  𝐴 )  ×  V ) )  ∩  ( V  ×  𝐵 ) )  =  ( ( ( 𝐺  ∩  ( 𝑌  ×  V ) )  ∩  ( 𝐴  ×  V ) )  ∩  ( V  ×  𝐵 ) ) | 
						
							| 24 |  | inass | ⊢ ( ( ( 𝐺  ∩  ( 𝑌  ×  V ) )  ∩  ( 𝐴  ×  V ) )  ∩  ( V  ×  𝐵 ) )  =  ( ( 𝐺  ∩  ( 𝑌  ×  V ) )  ∩  ( ( 𝐴  ×  V )  ∩  ( V  ×  𝐵 ) ) ) | 
						
							| 25 | 23 24 | eqtri | ⊢ ( ( 𝐺  ∩  ( ( 𝑌  ∩  𝐴 )  ×  V ) )  ∩  ( V  ×  𝐵 ) )  =  ( ( 𝐺  ∩  ( 𝑌  ×  V ) )  ∩  ( ( 𝐴  ×  V )  ∩  ( V  ×  𝐵 ) ) ) | 
						
							| 26 | 17 18 25 | 3eqtr4i | ⊢ ( ( 𝐺  ∩  ( 𝐴  ×  𝐵 ) )  ∩  ( 𝑌  ×  V ) )  =  ( ( 𝐺  ∩  ( ( 𝑌  ∩  𝐴 )  ×  V ) )  ∩  ( V  ×  𝐵 ) ) | 
						
							| 27 | 26 | cnveqi | ⊢ ◡ ( ( 𝐺  ∩  ( 𝐴  ×  𝐵 ) )  ∩  ( 𝑌  ×  V ) )  =  ◡ ( ( 𝐺  ∩  ( ( 𝑌  ∩  𝐴 )  ×  V ) )  ∩  ( V  ×  𝐵 ) ) | 
						
							| 28 |  | df-res | ⊢ ( ◡ ( 𝐺  ∩  ( ( 𝑌  ∩  𝐴 )  ×  V ) )  ↾  𝐵 )  =  ( ◡ ( 𝐺  ∩  ( ( 𝑌  ∩  𝐴 )  ×  V ) )  ∩  ( 𝐵  ×  V ) ) | 
						
							| 29 |  | cnvxp | ⊢ ◡ ( V  ×  𝐵 )  =  ( 𝐵  ×  V ) | 
						
							| 30 | 29 | ineq2i | ⊢ ( ◡ ( 𝐺  ∩  ( ( 𝑌  ∩  𝐴 )  ×  V ) )  ∩  ◡ ( V  ×  𝐵 ) )  =  ( ◡ ( 𝐺  ∩  ( ( 𝑌  ∩  𝐴 )  ×  V ) )  ∩  ( 𝐵  ×  V ) ) | 
						
							| 31 | 28 30 | eqtr4i | ⊢ ( ◡ ( 𝐺  ∩  ( ( 𝑌  ∩  𝐴 )  ×  V ) )  ↾  𝐵 )  =  ( ◡ ( 𝐺  ∩  ( ( 𝑌  ∩  𝐴 )  ×  V ) )  ∩  ◡ ( V  ×  𝐵 ) ) | 
						
							| 32 | 9 27 31 | 3eqtr4ri | ⊢ ( ◡ ( 𝐺  ∩  ( ( 𝑌  ∩  𝐴 )  ×  V ) )  ↾  𝐵 )  =  ◡ ( ( 𝐺  ∩  ( 𝐴  ×  𝐵 ) )  ∩  ( 𝑌  ×  V ) ) | 
						
							| 33 | 32 | dmeqi | ⊢ dom  ( ◡ ( 𝐺  ∩  ( ( 𝑌  ∩  𝐴 )  ×  V ) )  ↾  𝐵 )  =  dom  ◡ ( ( 𝐺  ∩  ( 𝐴  ×  𝐵 ) )  ∩  ( 𝑌  ×  V ) ) | 
						
							| 34 |  | incom | ⊢ ( 𝐵  ∩  dom  ◡ ( 𝐺  ∩  ( ( 𝑌  ∩  𝐴 )  ×  V ) ) )  =  ( dom  ◡ ( 𝐺  ∩  ( ( 𝑌  ∩  𝐴 )  ×  V ) )  ∩  𝐵 ) | 
						
							| 35 |  | dmres | ⊢ dom  ( ◡ ( 𝐺  ∩  ( ( 𝑌  ∩  𝐴 )  ×  V ) )  ↾  𝐵 )  =  ( 𝐵  ∩  dom  ◡ ( 𝐺  ∩  ( ( 𝑌  ∩  𝐴 )  ×  V ) ) ) | 
						
							| 36 |  | df-rn | ⊢ ran  ( 𝐺  ∩  ( ( 𝑌  ∩  𝐴 )  ×  V ) )  =  dom  ◡ ( 𝐺  ∩  ( ( 𝑌  ∩  𝐴 )  ×  V ) ) | 
						
							| 37 | 36 | ineq1i | ⊢ ( ran  ( 𝐺  ∩  ( ( 𝑌  ∩  𝐴 )  ×  V ) )  ∩  𝐵 )  =  ( dom  ◡ ( 𝐺  ∩  ( ( 𝑌  ∩  𝐴 )  ×  V ) )  ∩  𝐵 ) | 
						
							| 38 | 34 35 37 | 3eqtr4ri | ⊢ ( ran  ( 𝐺  ∩  ( ( 𝑌  ∩  𝐴 )  ×  V ) )  ∩  𝐵 )  =  dom  ( ◡ ( 𝐺  ∩  ( ( 𝑌  ∩  𝐴 )  ×  V ) )  ↾  𝐵 ) | 
						
							| 39 |  | df-rn | ⊢ ran  ( ( 𝐺  ∩  ( 𝐴  ×  𝐵 ) )  ∩  ( 𝑌  ×  V ) )  =  dom  ◡ ( ( 𝐺  ∩  ( 𝐴  ×  𝐵 ) )  ∩  ( 𝑌  ×  V ) ) | 
						
							| 40 | 33 38 39 | 3eqtr4ri | ⊢ ran  ( ( 𝐺  ∩  ( 𝐴  ×  𝐵 ) )  ∩  ( 𝑌  ×  V ) )  =  ( ran  ( 𝐺  ∩  ( ( 𝑌  ∩  𝐴 )  ×  V ) )  ∩  𝐵 ) | 
						
							| 41 | 8 40 | eqtr4i | ⊢ ( ( 𝐺  “  ( 𝑌  ∩  𝐴 ) )  ∩  𝐵 )  =  ran  ( ( 𝐺  ∩  ( 𝐴  ×  𝐵 ) )  ∩  ( 𝑌  ×  V ) ) | 
						
							| 42 | 2 3 41 | 3eqtr4i | ⊢ ( ( 𝐺  ∩  ( 𝐴  ×  𝐵 ) )  “  𝑌 )  =  ( ( 𝐺  “  ( 𝑌  ∩  𝐴 ) )  ∩  𝐵 ) |