Metamath Proof Explorer


Theorem imaiun

Description: The image of an indexed union is the indexed union of the images. (Contributed by Mario Carneiro, 18-Jun-2014)

Ref Expression
Assertion imaiun ( 𝐴 𝑥𝐵 𝐶 ) = 𝑥𝐵 ( 𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 rexcom4 ( ∃ 𝑥𝐵𝑧 ( 𝑧𝐶 ∧ ⟨ 𝑧 , 𝑦 ⟩ ∈ 𝐴 ) ↔ ∃ 𝑧𝑥𝐵 ( 𝑧𝐶 ∧ ⟨ 𝑧 , 𝑦 ⟩ ∈ 𝐴 ) )
2 vex 𝑦 ∈ V
3 2 elima3 ( 𝑦 ∈ ( 𝐴𝐶 ) ↔ ∃ 𝑧 ( 𝑧𝐶 ∧ ⟨ 𝑧 , 𝑦 ⟩ ∈ 𝐴 ) )
4 3 rexbii ( ∃ 𝑥𝐵 𝑦 ∈ ( 𝐴𝐶 ) ↔ ∃ 𝑥𝐵𝑧 ( 𝑧𝐶 ∧ ⟨ 𝑧 , 𝑦 ⟩ ∈ 𝐴 ) )
5 eliun ( 𝑧 𝑥𝐵 𝐶 ↔ ∃ 𝑥𝐵 𝑧𝐶 )
6 5 anbi1i ( ( 𝑧 𝑥𝐵 𝐶 ∧ ⟨ 𝑧 , 𝑦 ⟩ ∈ 𝐴 ) ↔ ( ∃ 𝑥𝐵 𝑧𝐶 ∧ ⟨ 𝑧 , 𝑦 ⟩ ∈ 𝐴 ) )
7 r19.41v ( ∃ 𝑥𝐵 ( 𝑧𝐶 ∧ ⟨ 𝑧 , 𝑦 ⟩ ∈ 𝐴 ) ↔ ( ∃ 𝑥𝐵 𝑧𝐶 ∧ ⟨ 𝑧 , 𝑦 ⟩ ∈ 𝐴 ) )
8 6 7 bitr4i ( ( 𝑧 𝑥𝐵 𝐶 ∧ ⟨ 𝑧 , 𝑦 ⟩ ∈ 𝐴 ) ↔ ∃ 𝑥𝐵 ( 𝑧𝐶 ∧ ⟨ 𝑧 , 𝑦 ⟩ ∈ 𝐴 ) )
9 8 exbii ( ∃ 𝑧 ( 𝑧 𝑥𝐵 𝐶 ∧ ⟨ 𝑧 , 𝑦 ⟩ ∈ 𝐴 ) ↔ ∃ 𝑧𝑥𝐵 ( 𝑧𝐶 ∧ ⟨ 𝑧 , 𝑦 ⟩ ∈ 𝐴 ) )
10 1 4 9 3bitr4ri ( ∃ 𝑧 ( 𝑧 𝑥𝐵 𝐶 ∧ ⟨ 𝑧 , 𝑦 ⟩ ∈ 𝐴 ) ↔ ∃ 𝑥𝐵 𝑦 ∈ ( 𝐴𝐶 ) )
11 2 elima3 ( 𝑦 ∈ ( 𝐴 𝑥𝐵 𝐶 ) ↔ ∃ 𝑧 ( 𝑧 𝑥𝐵 𝐶 ∧ ⟨ 𝑧 , 𝑦 ⟩ ∈ 𝐴 ) )
12 eliun ( 𝑦 𝑥𝐵 ( 𝐴𝐶 ) ↔ ∃ 𝑥𝐵 𝑦 ∈ ( 𝐴𝐶 ) )
13 10 11 12 3bitr4i ( 𝑦 ∈ ( 𝐴 𝑥𝐵 𝐶 ) ↔ 𝑦 𝑥𝐵 ( 𝐴𝐶 ) )
14 13 eqriv ( 𝐴 𝑥𝐵 𝐶 ) = 𝑥𝐵 ( 𝐴𝐶 )