Metamath Proof Explorer


Theorem imaiun1

Description: The image of an indexed union is the indexed union of the images. (Contributed by RP, 29-Jun-2020)

Ref Expression
Assertion imaiun1 ( 𝑥𝐴 𝐵𝐶 ) = 𝑥𝐴 ( 𝐵𝐶 )

Proof

Step Hyp Ref Expression
1 rexcom4 ( ∃ 𝑥𝐴𝑧 ( 𝑧𝐶 ∧ ⟨ 𝑧 , 𝑦 ⟩ ∈ 𝐵 ) ↔ ∃ 𝑧𝑥𝐴 ( 𝑧𝐶 ∧ ⟨ 𝑧 , 𝑦 ⟩ ∈ 𝐵 ) )
2 vex 𝑦 ∈ V
3 2 elima3 ( 𝑦 ∈ ( 𝐵𝐶 ) ↔ ∃ 𝑧 ( 𝑧𝐶 ∧ ⟨ 𝑧 , 𝑦 ⟩ ∈ 𝐵 ) )
4 3 rexbii ( ∃ 𝑥𝐴 𝑦 ∈ ( 𝐵𝐶 ) ↔ ∃ 𝑥𝐴𝑧 ( 𝑧𝐶 ∧ ⟨ 𝑧 , 𝑦 ⟩ ∈ 𝐵 ) )
5 eliun ( ⟨ 𝑧 , 𝑦 ⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃ 𝑥𝐴𝑧 , 𝑦 ⟩ ∈ 𝐵 )
6 5 anbi2i ( ( 𝑧𝐶 ∧ ⟨ 𝑧 , 𝑦 ⟩ ∈ 𝑥𝐴 𝐵 ) ↔ ( 𝑧𝐶 ∧ ∃ 𝑥𝐴𝑧 , 𝑦 ⟩ ∈ 𝐵 ) )
7 r19.42v ( ∃ 𝑥𝐴 ( 𝑧𝐶 ∧ ⟨ 𝑧 , 𝑦 ⟩ ∈ 𝐵 ) ↔ ( 𝑧𝐶 ∧ ∃ 𝑥𝐴𝑧 , 𝑦 ⟩ ∈ 𝐵 ) )
8 6 7 bitr4i ( ( 𝑧𝐶 ∧ ⟨ 𝑧 , 𝑦 ⟩ ∈ 𝑥𝐴 𝐵 ) ↔ ∃ 𝑥𝐴 ( 𝑧𝐶 ∧ ⟨ 𝑧 , 𝑦 ⟩ ∈ 𝐵 ) )
9 8 exbii ( ∃ 𝑧 ( 𝑧𝐶 ∧ ⟨ 𝑧 , 𝑦 ⟩ ∈ 𝑥𝐴 𝐵 ) ↔ ∃ 𝑧𝑥𝐴 ( 𝑧𝐶 ∧ ⟨ 𝑧 , 𝑦 ⟩ ∈ 𝐵 ) )
10 1 4 9 3bitr4ri ( ∃ 𝑧 ( 𝑧𝐶 ∧ ⟨ 𝑧 , 𝑦 ⟩ ∈ 𝑥𝐴 𝐵 ) ↔ ∃ 𝑥𝐴 𝑦 ∈ ( 𝐵𝐶 ) )
11 2 elima3 ( 𝑦 ∈ ( 𝑥𝐴 𝐵𝐶 ) ↔ ∃ 𝑧 ( 𝑧𝐶 ∧ ⟨ 𝑧 , 𝑦 ⟩ ∈ 𝑥𝐴 𝐵 ) )
12 eliun ( 𝑦 𝑥𝐴 ( 𝐵𝐶 ) ↔ ∃ 𝑥𝐴 𝑦 ∈ ( 𝐵𝐶 ) )
13 10 11 12 3bitr4i ( 𝑦 ∈ ( 𝑥𝐴 𝐵𝐶 ) ↔ 𝑦 𝑥𝐴 ( 𝐵𝐶 ) )
14 13 eqriv ( 𝑥𝐴 𝐵𝐶 ) = 𝑥𝐴 ( 𝐵𝐶 )