| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imasabl.u |
⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) |
| 2 |
|
imasabl.v |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) |
| 3 |
|
imasabl.p |
⊢ ( 𝜑 → + = ( +g ‘ 𝑅 ) ) |
| 4 |
|
imasabl.f |
⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) |
| 5 |
|
imasabl.e |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ) ) |
| 6 |
|
imasabl.r |
⊢ ( 𝜑 → 𝑅 ∈ Abel ) |
| 7 |
|
imasabl.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 8 |
6
|
ablgrpd |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 9 |
1 2 3 4 5 8 7
|
imasgrp |
⊢ ( 𝜑 → ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) |
| 10 |
1 2 4 6
|
imasbas |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑈 ) ) |
| 11 |
10
|
eqcomd |
⊢ ( 𝜑 → ( Base ‘ 𝑈 ) = 𝐵 ) |
| 12 |
11
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝑈 ) ↔ 𝑥 ∈ 𝐵 ) ) |
| 13 |
11
|
eleq2d |
⊢ ( 𝜑 → ( 𝑦 ∈ ( Base ‘ 𝑈 ) ↔ 𝑦 ∈ 𝐵 ) ) |
| 14 |
12 13
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑈 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑈 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 16 |
|
foelcdmi |
⊢ ( ( 𝐹 : 𝑉 –onto→ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑎 ∈ 𝑉 ( 𝐹 ‘ 𝑎 ) = 𝑥 ) |
| 17 |
16
|
ex |
⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → ( 𝑥 ∈ 𝐵 → ∃ 𝑎 ∈ 𝑉 ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) |
| 18 |
|
foelcdmi |
⊢ ( ( 𝐹 : 𝑉 –onto→ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑏 ∈ 𝑉 ( 𝐹 ‘ 𝑏 ) = 𝑦 ) |
| 19 |
18
|
ex |
⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → ( 𝑦 ∈ 𝐵 → ∃ 𝑏 ∈ 𝑉 ( 𝐹 ‘ 𝑏 ) = 𝑦 ) ) |
| 20 |
17 19
|
anim12d |
⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ∃ 𝑎 ∈ 𝑉 ( 𝐹 ‘ 𝑎 ) = 𝑥 ∧ ∃ 𝑏 ∈ 𝑉 ( 𝐹 ‘ 𝑏 ) = 𝑦 ) ) ) |
| 21 |
4 20
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ∃ 𝑎 ∈ 𝑉 ( 𝐹 ‘ 𝑎 ) = 𝑥 ∧ ∃ 𝑏 ∈ 𝑉 ( 𝐹 ‘ 𝑏 ) = 𝑦 ) ) ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ∃ 𝑎 ∈ 𝑉 ( 𝐹 ‘ 𝑎 ) = 𝑥 ∧ ∃ 𝑏 ∈ 𝑉 ( 𝐹 ‘ 𝑏 ) = 𝑦 ) ) ) |
| 23 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑏 ∈ 𝑉 ) → 𝑅 ∈ Abel ) |
| 24 |
2
|
eleq2d |
⊢ ( 𝜑 → ( 𝑎 ∈ 𝑉 ↔ 𝑎 ∈ ( Base ‘ 𝑅 ) ) ) |
| 25 |
24
|
biimpd |
⊢ ( 𝜑 → ( 𝑎 ∈ 𝑉 → 𝑎 ∈ ( Base ‘ 𝑅 ) ) ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) → ( 𝑎 ∈ 𝑉 → 𝑎 ∈ ( Base ‘ 𝑅 ) ) ) |
| 27 |
26
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ∧ 𝑎 ∈ 𝑉 ) → 𝑎 ∈ ( Base ‘ 𝑅 ) ) |
| 28 |
27
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑏 ∈ 𝑉 ) → 𝑎 ∈ ( Base ‘ 𝑅 ) ) |
| 29 |
2
|
eleq2d |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝑉 ↔ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) |
| 30 |
29
|
biimpd |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝑉 → 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) → ( 𝑏 ∈ 𝑉 → 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) |
| 32 |
31
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ∧ 𝑎 ∈ 𝑉 ) → ( 𝑏 ∈ 𝑉 → 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) |
| 33 |
32
|
imp |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑏 ∈ 𝑉 ) → 𝑏 ∈ ( Base ‘ 𝑅 ) ) |
| 34 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 35 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 36 |
34 35
|
ablcom |
⊢ ( ( 𝑅 ∈ Abel ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) = ( 𝑏 ( +g ‘ 𝑅 ) 𝑎 ) ) |
| 37 |
23 28 33 36
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑏 ∈ 𝑉 ) → ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) = ( 𝑏 ( +g ‘ 𝑅 ) 𝑎 ) ) |
| 38 |
37
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑏 ∈ 𝑉 ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( 𝐹 ‘ ( 𝑏 ( +g ‘ 𝑅 ) 𝑎 ) ) ) |
| 39 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑏 ∈ 𝑉 ) → 𝜑 ) |
| 40 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ∧ 𝑎 ∈ 𝑉 ) → 𝑎 ∈ 𝑉 ) |
| 41 |
40
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑏 ∈ 𝑉 ) → 𝑎 ∈ 𝑉 ) |
| 42 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑏 ∈ 𝑉 ) → 𝑏 ∈ 𝑉 ) |
| 43 |
3
|
eqcomd |
⊢ ( 𝜑 → ( +g ‘ 𝑅 ) = + ) |
| 44 |
43
|
oveqd |
⊢ ( 𝜑 → ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) = ( 𝑎 + 𝑏 ) ) |
| 45 |
44
|
fveq2d |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) ) |
| 46 |
43
|
oveqd |
⊢ ( 𝜑 → ( 𝑝 ( +g ‘ 𝑅 ) 𝑞 ) = ( 𝑝 + 𝑞 ) ) |
| 47 |
46
|
fveq2d |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝑝 ( +g ‘ 𝑅 ) 𝑞 ) ) = ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ) |
| 48 |
45 47
|
eqeq12d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 ( +g ‘ 𝑅 ) 𝑞 ) ) ↔ ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ) ) |
| 49 |
48
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 ( +g ‘ 𝑅 ) 𝑞 ) ) ↔ ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ) ) |
| 50 |
5 49
|
sylibrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 ( +g ‘ 𝑅 ) 𝑞 ) ) ) ) |
| 51 |
|
eqid |
⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) |
| 52 |
4 50 1 2 6 35 51
|
imasaddval |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑏 ) ) = ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) ) |
| 53 |
39 41 42 52
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑏 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑏 ) ) = ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) ) |
| 54 |
4 50 1 2 6 35 51
|
imasaddval |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑉 ∧ 𝑎 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑏 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑎 ) ) = ( 𝐹 ‘ ( 𝑏 ( +g ‘ 𝑅 ) 𝑎 ) ) ) |
| 55 |
39 42 41 54
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑏 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑏 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑎 ) ) = ( 𝐹 ‘ ( 𝑏 ( +g ‘ 𝑅 ) 𝑎 ) ) ) |
| 56 |
38 53 55
|
3eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑏 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑏 ) ) = ( ( 𝐹 ‘ 𝑏 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑎 ) ) ) |
| 57 |
56
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑏 ∈ 𝑉 ) ∧ ( ( 𝐹 ‘ 𝑏 ) = 𝑦 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) → ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑏 ) ) = ( ( 𝐹 ‘ 𝑏 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑎 ) ) ) |
| 58 |
|
oveq12 |
⊢ ( ( ( 𝐹 ‘ 𝑎 ) = 𝑥 ∧ ( 𝐹 ‘ 𝑏 ) = 𝑦 ) → ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑏 ) ) = ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) ) |
| 59 |
58
|
ancoms |
⊢ ( ( ( 𝐹 ‘ 𝑏 ) = 𝑦 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) → ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑏 ) ) = ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) ) |
| 60 |
|
oveq12 |
⊢ ( ( ( 𝐹 ‘ 𝑏 ) = 𝑦 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) → ( ( 𝐹 ‘ 𝑏 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑎 ) ) = ( 𝑦 ( +g ‘ 𝑈 ) 𝑥 ) ) |
| 61 |
59 60
|
eqeq12d |
⊢ ( ( ( 𝐹 ‘ 𝑏 ) = 𝑦 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) → ( ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑏 ) ) = ( ( 𝐹 ‘ 𝑏 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑎 ) ) ↔ ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑈 ) 𝑥 ) ) ) |
| 62 |
61
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑏 ∈ 𝑉 ) ∧ ( ( 𝐹 ‘ 𝑏 ) = 𝑦 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑏 ) ) = ( ( 𝐹 ‘ 𝑏 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑎 ) ) ↔ ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑈 ) 𝑥 ) ) ) |
| 63 |
57 62
|
mpbid |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑏 ∈ 𝑉 ) ∧ ( ( 𝐹 ‘ 𝑏 ) = 𝑦 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) → ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑈 ) 𝑥 ) ) |
| 64 |
63
|
exp32 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑏 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑏 ) = 𝑦 → ( ( 𝐹 ‘ 𝑎 ) = 𝑥 → ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑈 ) 𝑥 ) ) ) ) |
| 65 |
64
|
rexlimdva |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ∧ 𝑎 ∈ 𝑉 ) → ( ∃ 𝑏 ∈ 𝑉 ( 𝐹 ‘ 𝑏 ) = 𝑦 → ( ( 𝐹 ‘ 𝑎 ) = 𝑥 → ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑈 ) 𝑥 ) ) ) ) |
| 66 |
65
|
com23 |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ∧ 𝑎 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑎 ) = 𝑥 → ( ∃ 𝑏 ∈ 𝑉 ( 𝐹 ‘ 𝑏 ) = 𝑦 → ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑈 ) 𝑥 ) ) ) ) |
| 67 |
66
|
rexlimdva |
⊢ ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) → ( ∃ 𝑎 ∈ 𝑉 ( 𝐹 ‘ 𝑎 ) = 𝑥 → ( ∃ 𝑏 ∈ 𝑉 ( 𝐹 ‘ 𝑏 ) = 𝑦 → ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑈 ) 𝑥 ) ) ) ) |
| 68 |
67
|
impd |
⊢ ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) → ( ( ∃ 𝑎 ∈ 𝑉 ( 𝐹 ‘ 𝑎 ) = 𝑥 ∧ ∃ 𝑏 ∈ 𝑉 ( 𝐹 ‘ 𝑏 ) = 𝑦 ) → ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑈 ) 𝑥 ) ) ) |
| 69 |
22 68
|
syld |
⊢ ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑈 ) 𝑥 ) ) ) |
| 70 |
15 69
|
sylbid |
⊢ ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑈 ) ) → ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑈 ) 𝑥 ) ) ) |
| 71 |
70
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑈 ) ) ) → ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑈 ) 𝑥 ) ) |
| 72 |
71
|
ralrimivva |
⊢ ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝑈 ) ∀ 𝑦 ∈ ( Base ‘ 𝑈 ) ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑈 ) 𝑥 ) ) |
| 73 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) → ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) |
| 74 |
72 73
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝑈 ) ∀ 𝑦 ∈ ( Base ‘ 𝑈 ) ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑈 ) 𝑥 ) ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ) |
| 75 |
9 74
|
mpdan |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( Base ‘ 𝑈 ) ∀ 𝑦 ∈ ( Base ‘ 𝑈 ) ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑈 ) 𝑥 ) ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ) |
| 76 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
| 77 |
76 51
|
isabl2 |
⊢ ( 𝑈 ∈ Abel ↔ ( 𝑈 ∈ Grp ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑈 ) ∀ 𝑦 ∈ ( Base ‘ 𝑈 ) ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑈 ) 𝑥 ) ) ) |
| 78 |
77
|
anbi1i |
⊢ ( ( 𝑈 ∈ Abel ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ↔ ( ( 𝑈 ∈ Grp ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑈 ) ∀ 𝑦 ∈ ( Base ‘ 𝑈 ) ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑈 ) 𝑥 ) ) ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) |
| 79 |
|
an21 |
⊢ ( ( ( 𝑈 ∈ Grp ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑈 ) ∀ 𝑦 ∈ ( Base ‘ 𝑈 ) ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑈 ) 𝑥 ) ) ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ↔ ( ∀ 𝑥 ∈ ( Base ‘ 𝑈 ) ∀ 𝑦 ∈ ( Base ‘ 𝑈 ) ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑈 ) 𝑥 ) ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ) |
| 80 |
78 79
|
bitri |
⊢ ( ( 𝑈 ∈ Abel ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ↔ ( ∀ 𝑥 ∈ ( Base ‘ 𝑈 ) ∀ 𝑦 ∈ ( Base ‘ 𝑈 ) ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑈 ) 𝑥 ) ∧ ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) ) |
| 81 |
75 80
|
sylibr |
⊢ ( 𝜑 → ( 𝑈 ∈ Abel ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) |