| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imasaddf.f |
⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) |
| 2 |
|
imasaddf.e |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) |
| 3 |
|
imasaddf.u |
⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) |
| 4 |
|
imasaddf.v |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) |
| 5 |
|
imasaddf.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) |
| 6 |
|
imasaddf.p |
⊢ · = ( +g ‘ 𝑅 ) |
| 7 |
|
imasaddf.a |
⊢ ∙ = ( +g ‘ 𝑈 ) |
| 8 |
|
imasaddf.c |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( 𝑝 · 𝑞 ) ∈ 𝑉 ) |
| 9 |
3 4 1 5 6 7
|
imasplusg |
⊢ ( 𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) 〉 } ) |
| 10 |
1 2 9 8
|
imasaddflem |
⊢ ( 𝜑 → ∙ : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |