Metamath Proof Explorer


Theorem imasaddflem

Description: The image set operations are closed if the original operation is. (Contributed by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses imasaddf.f ( 𝜑𝐹 : 𝑉onto𝐵 )
imasaddf.e ( ( 𝜑 ∧ ( 𝑎𝑉𝑏𝑉 ) ∧ ( 𝑝𝑉𝑞𝑉 ) ) → ( ( ( 𝐹𝑎 ) = ( 𝐹𝑝 ) ∧ ( 𝐹𝑏 ) = ( 𝐹𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) )
imasaddflem.a ( 𝜑 = 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } )
imasaddflem.c ( ( 𝜑 ∧ ( 𝑝𝑉𝑞𝑉 ) ) → ( 𝑝 · 𝑞 ) ∈ 𝑉 )
Assertion imasaddflem ( 𝜑 : ( 𝐵 × 𝐵 ) ⟶ 𝐵 )

Proof

Step Hyp Ref Expression
1 imasaddf.f ( 𝜑𝐹 : 𝑉onto𝐵 )
2 imasaddf.e ( ( 𝜑 ∧ ( 𝑎𝑉𝑏𝑉 ) ∧ ( 𝑝𝑉𝑞𝑉 ) ) → ( ( ( 𝐹𝑎 ) = ( 𝐹𝑝 ) ∧ ( 𝐹𝑏 ) = ( 𝐹𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) )
3 imasaddflem.a ( 𝜑 = 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } )
4 imasaddflem.c ( ( 𝜑 ∧ ( 𝑝𝑉𝑞𝑉 ) ) → ( 𝑝 · 𝑞 ) ∈ 𝑉 )
5 1 2 3 imasaddfnlem ( 𝜑 Fn ( 𝐵 × 𝐵 ) )
6 fof ( 𝐹 : 𝑉onto𝐵𝐹 : 𝑉𝐵 )
7 1 6 syl ( 𝜑𝐹 : 𝑉𝐵 )
8 ffvelrn ( ( 𝐹 : 𝑉𝐵𝑝𝑉 ) → ( 𝐹𝑝 ) ∈ 𝐵 )
9 ffvelrn ( ( 𝐹 : 𝑉𝐵𝑞𝑉 ) → ( 𝐹𝑞 ) ∈ 𝐵 )
10 8 9 anim12dan ( ( 𝐹 : 𝑉𝐵 ∧ ( 𝑝𝑉𝑞𝑉 ) ) → ( ( 𝐹𝑝 ) ∈ 𝐵 ∧ ( 𝐹𝑞 ) ∈ 𝐵 ) )
11 opelxpi ( ( ( 𝐹𝑝 ) ∈ 𝐵 ∧ ( 𝐹𝑞 ) ∈ 𝐵 ) → ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ ∈ ( 𝐵 × 𝐵 ) )
12 10 11 syl ( ( 𝐹 : 𝑉𝐵 ∧ ( 𝑝𝑉𝑞𝑉 ) ) → ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ ∈ ( 𝐵 × 𝐵 ) )
13 7 12 sylan ( ( 𝜑 ∧ ( 𝑝𝑉𝑞𝑉 ) ) → ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ ∈ ( 𝐵 × 𝐵 ) )
14 ffvelrn ( ( 𝐹 : 𝑉𝐵 ∧ ( 𝑝 · 𝑞 ) ∈ 𝑉 ) → ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ∈ 𝐵 )
15 7 4 14 syl2an2r ( ( 𝜑 ∧ ( 𝑝𝑉𝑞𝑉 ) ) → ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ∈ 𝐵 )
16 13 15 opelxpd ( ( 𝜑 ∧ ( 𝑝𝑉𝑞𝑉 ) ) → ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ ∈ ( ( 𝐵 × 𝐵 ) × 𝐵 ) )
17 16 snssd ( ( 𝜑 ∧ ( 𝑝𝑉𝑞𝑉 ) ) → { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } ⊆ ( ( 𝐵 × 𝐵 ) × 𝐵 ) )
18 17 anassrs ( ( ( 𝜑𝑝𝑉 ) ∧ 𝑞𝑉 ) → { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } ⊆ ( ( 𝐵 × 𝐵 ) × 𝐵 ) )
19 18 iunssd ( ( 𝜑𝑝𝑉 ) → 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } ⊆ ( ( 𝐵 × 𝐵 ) × 𝐵 ) )
20 19 iunssd ( 𝜑 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } ⊆ ( ( 𝐵 × 𝐵 ) × 𝐵 ) )
21 3 20 eqsstrd ( 𝜑 ⊆ ( ( 𝐵 × 𝐵 ) × 𝐵 ) )
22 dff2 ( : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ↔ ( Fn ( 𝐵 × 𝐵 ) ∧ ⊆ ( ( 𝐵 × 𝐵 ) × 𝐵 ) ) )
23 5 21 22 sylanbrc ( 𝜑 : ( 𝐵 × 𝐵 ) ⟶ 𝐵 )