Step |
Hyp |
Ref |
Expression |
1 |
|
imasaddf.f |
⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) |
2 |
|
imasaddf.e |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) |
3 |
|
imasaddflem.a |
⊢ ( 𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) 〉 } ) |
4 |
|
imasaddflem.c |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( 𝑝 · 𝑞 ) ∈ 𝑉 ) |
5 |
1 2 3
|
imasaddfnlem |
⊢ ( 𝜑 → ∙ Fn ( 𝐵 × 𝐵 ) ) |
6 |
|
fof |
⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → 𝐹 : 𝑉 ⟶ 𝐵 ) |
7 |
1 6
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑉 ⟶ 𝐵 ) |
8 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝑉 ⟶ 𝐵 ∧ 𝑝 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑝 ) ∈ 𝐵 ) |
9 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝑉 ⟶ 𝐵 ∧ 𝑞 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑞 ) ∈ 𝐵 ) |
10 |
8 9
|
anim12dan |
⊢ ( ( 𝐹 : 𝑉 ⟶ 𝐵 ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑝 ) ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑞 ) ∈ 𝐵 ) ) |
11 |
|
opelxpi |
⊢ ( ( ( 𝐹 ‘ 𝑝 ) ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑞 ) ∈ 𝐵 ) → 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 ∈ ( 𝐵 × 𝐵 ) ) |
12 |
10 11
|
syl |
⊢ ( ( 𝐹 : 𝑉 ⟶ 𝐵 ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 ∈ ( 𝐵 × 𝐵 ) ) |
13 |
7 12
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 ∈ ( 𝐵 × 𝐵 ) ) |
14 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝑉 ⟶ 𝐵 ∧ ( 𝑝 · 𝑞 ) ∈ 𝑉 ) → ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ∈ 𝐵 ) |
15 |
7 4 14
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ∈ 𝐵 ) |
16 |
13 15
|
opelxpd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) 〉 ∈ ( ( 𝐵 × 𝐵 ) × 𝐵 ) ) |
17 |
16
|
snssd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) 〉 } ⊆ ( ( 𝐵 × 𝐵 ) × 𝐵 ) ) |
18 |
17
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑉 ) ∧ 𝑞 ∈ 𝑉 ) → { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) 〉 } ⊆ ( ( 𝐵 × 𝐵 ) × 𝐵 ) ) |
19 |
18
|
iunssd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑉 ) → ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) 〉 } ⊆ ( ( 𝐵 × 𝐵 ) × 𝐵 ) ) |
20 |
19
|
iunssd |
⊢ ( 𝜑 → ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 { 〈 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) 〉 } ⊆ ( ( 𝐵 × 𝐵 ) × 𝐵 ) ) |
21 |
3 20
|
eqsstrd |
⊢ ( 𝜑 → ∙ ⊆ ( ( 𝐵 × 𝐵 ) × 𝐵 ) ) |
22 |
|
dff2 |
⊢ ( ∙ : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ↔ ( ∙ Fn ( 𝐵 × 𝐵 ) ∧ ∙ ⊆ ( ( 𝐵 × 𝐵 ) × 𝐵 ) ) ) |
23 |
5 21 22
|
sylanbrc |
⊢ ( 𝜑 → ∙ : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |