Metamath Proof Explorer


Theorem imasaddfnlem

Description: The image structure operation is a function if the original operation is compatible with the function. (Contributed by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses imasaddf.f ( 𝜑𝐹 : 𝑉onto𝐵 )
imasaddf.e ( ( 𝜑 ∧ ( 𝑎𝑉𝑏𝑉 ) ∧ ( 𝑝𝑉𝑞𝑉 ) ) → ( ( ( 𝐹𝑎 ) = ( 𝐹𝑝 ) ∧ ( 𝐹𝑏 ) = ( 𝐹𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) )
imasaddflem.a ( 𝜑 = 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } )
Assertion imasaddfnlem ( 𝜑 Fn ( 𝐵 × 𝐵 ) )

Proof

Step Hyp Ref Expression
1 imasaddf.f ( 𝜑𝐹 : 𝑉onto𝐵 )
2 imasaddf.e ( ( 𝜑 ∧ ( 𝑎𝑉𝑏𝑉 ) ∧ ( 𝑝𝑉𝑞𝑉 ) ) → ( ( ( 𝐹𝑎 ) = ( 𝐹𝑝 ) ∧ ( 𝐹𝑏 ) = ( 𝐹𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) )
3 imasaddflem.a ( 𝜑 = 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } )
4 opex ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ ∈ V
5 fvex ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ∈ V
6 4 5 relsnop Rel { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ }
7 6 rgenw 𝑞𝑉 Rel { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ }
8 reliun ( Rel 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } ↔ ∀ 𝑞𝑉 Rel { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } )
9 7 8 mpbir Rel 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ }
10 9 rgenw 𝑝𝑉 Rel 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ }
11 reliun ( Rel 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } ↔ ∀ 𝑝𝑉 Rel 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } )
12 10 11 mpbir Rel 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ }
13 3 releqd ( 𝜑 → ( Rel ↔ Rel 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } ) )
14 12 13 mpbiri ( 𝜑 → Rel )
15 fof ( 𝐹 : 𝑉onto𝐵𝐹 : 𝑉𝐵 )
16 1 15 syl ( 𝜑𝐹 : 𝑉𝐵 )
17 ffvelrn ( ( 𝐹 : 𝑉𝐵𝑝𝑉 ) → ( 𝐹𝑝 ) ∈ 𝐵 )
18 ffvelrn ( ( 𝐹 : 𝑉𝐵𝑞𝑉 ) → ( 𝐹𝑞 ) ∈ 𝐵 )
19 17 18 anim12dan ( ( 𝐹 : 𝑉𝐵 ∧ ( 𝑝𝑉𝑞𝑉 ) ) → ( ( 𝐹𝑝 ) ∈ 𝐵 ∧ ( 𝐹𝑞 ) ∈ 𝐵 ) )
20 16 19 sylan ( ( 𝜑 ∧ ( 𝑝𝑉𝑞𝑉 ) ) → ( ( 𝐹𝑝 ) ∈ 𝐵 ∧ ( 𝐹𝑞 ) ∈ 𝐵 ) )
21 opelxpi ( ( ( 𝐹𝑝 ) ∈ 𝐵 ∧ ( 𝐹𝑞 ) ∈ 𝐵 ) → ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ ∈ ( 𝐵 × 𝐵 ) )
22 20 21 syl ( ( 𝜑 ∧ ( 𝑝𝑉𝑞𝑉 ) ) → ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ ∈ ( 𝐵 × 𝐵 ) )
23 opelxpi ( ( ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ ∈ ( 𝐵 × 𝐵 ) ∧ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ∈ V ) → ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ ∈ ( ( 𝐵 × 𝐵 ) × V ) )
24 22 5 23 sylancl ( ( 𝜑 ∧ ( 𝑝𝑉𝑞𝑉 ) ) → ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ ∈ ( ( 𝐵 × 𝐵 ) × V ) )
25 24 snssd ( ( 𝜑 ∧ ( 𝑝𝑉𝑞𝑉 ) ) → { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } ⊆ ( ( 𝐵 × 𝐵 ) × V ) )
26 25 anassrs ( ( ( 𝜑𝑝𝑉 ) ∧ 𝑞𝑉 ) → { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } ⊆ ( ( 𝐵 × 𝐵 ) × V ) )
27 26 iunssd ( ( 𝜑𝑝𝑉 ) → 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } ⊆ ( ( 𝐵 × 𝐵 ) × V ) )
28 27 iunssd ( 𝜑 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } ⊆ ( ( 𝐵 × 𝐵 ) × V ) )
29 3 28 eqsstrd ( 𝜑 ⊆ ( ( 𝐵 × 𝐵 ) × V ) )
30 dmss ( ⊆ ( ( 𝐵 × 𝐵 ) × V ) → dom ⊆ dom ( ( 𝐵 × 𝐵 ) × V ) )
31 29 30 syl ( 𝜑 → dom ⊆ dom ( ( 𝐵 × 𝐵 ) × V ) )
32 vn0 V ≠ ∅
33 dmxp ( V ≠ ∅ → dom ( ( 𝐵 × 𝐵 ) × V ) = ( 𝐵 × 𝐵 ) )
34 32 33 ax-mp dom ( ( 𝐵 × 𝐵 ) × V ) = ( 𝐵 × 𝐵 )
35 31 34 sseqtrdi ( 𝜑 → dom ⊆ ( 𝐵 × 𝐵 ) )
36 forn ( 𝐹 : 𝑉onto𝐵 → ran 𝐹 = 𝐵 )
37 1 36 syl ( 𝜑 → ran 𝐹 = 𝐵 )
38 37 sqxpeqd ( 𝜑 → ( ran 𝐹 × ran 𝐹 ) = ( 𝐵 × 𝐵 ) )
39 35 38 sseqtrrd ( 𝜑 → dom ⊆ ( ran 𝐹 × ran 𝐹 ) )
40 3 eleq2d ( 𝜑 → ( ⟨ ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ , 𝑤 ⟩ ∈ ↔ ⟨ ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ , 𝑤 ⟩ ∈ 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } ) )
41 40 adantr ( ( 𝜑 ∧ ( 𝑎𝑉𝑏𝑉 ) ) → ( ⟨ ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ , 𝑤 ⟩ ∈ ↔ ⟨ ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ , 𝑤 ⟩ ∈ 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } ) )
42 df-br ( ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ 𝑤 ↔ ⟨ ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ , 𝑤 ⟩ ∈ )
43 eliun ( ⟨ ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ , 𝑤 ⟩ ∈ 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } ↔ ∃ 𝑝𝑉 ⟨ ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ , 𝑤 ⟩ ∈ 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } )
44 eliun ( ⟨ ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ , 𝑤 ⟩ ∈ 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } ↔ ∃ 𝑞𝑉 ⟨ ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ , 𝑤 ⟩ ∈ { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } )
45 44 rexbii ( ∃ 𝑝𝑉 ⟨ ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ , 𝑤 ⟩ ∈ 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } ↔ ∃ 𝑝𝑉𝑞𝑉 ⟨ ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ , 𝑤 ⟩ ∈ { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } )
46 43 45 bitr2i ( ∃ 𝑝𝑉𝑞𝑉 ⟨ ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ , 𝑤 ⟩ ∈ { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } ↔ ⟨ ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ , 𝑤 ⟩ ∈ 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } )
47 41 42 46 3bitr4g ( ( 𝜑 ∧ ( 𝑎𝑉𝑏𝑉 ) ) → ( ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ 𝑤 ↔ ∃ 𝑝𝑉𝑞𝑉 ⟨ ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ , 𝑤 ⟩ ∈ { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } ) )
48 opex ⟨ ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ , 𝑤 ⟩ ∈ V
49 48 elsn ( ⟨ ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ , 𝑤 ⟩ ∈ { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } ↔ ⟨ ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ , 𝑤 ⟩ = ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ )
50 opex ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ ∈ V
51 vex 𝑤 ∈ V
52 50 51 opth ( ⟨ ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ , 𝑤 ⟩ = ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ ↔ ( ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ = ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ ∧ 𝑤 = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) )
53 fvex ( 𝐹𝑎 ) ∈ V
54 fvex ( 𝐹𝑏 ) ∈ V
55 53 54 opth ( ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ = ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ ↔ ( ( 𝐹𝑎 ) = ( 𝐹𝑝 ) ∧ ( 𝐹𝑏 ) = ( 𝐹𝑞 ) ) )
56 55 2 syl5bi ( ( 𝜑 ∧ ( 𝑎𝑉𝑏𝑉 ) ∧ ( 𝑝𝑉𝑞𝑉 ) ) → ( ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ = ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ → ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) )
57 eqeq2 ( ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) → ( 𝑤 = ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) ↔ 𝑤 = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) )
58 57 biimprd ( ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) → ( 𝑤 = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) → 𝑤 = ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) ) )
59 56 58 syl6 ( ( 𝜑 ∧ ( 𝑎𝑉𝑏𝑉 ) ∧ ( 𝑝𝑉𝑞𝑉 ) ) → ( ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ = ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ → ( 𝑤 = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) → 𝑤 = ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) ) ) )
60 59 impd ( ( 𝜑 ∧ ( 𝑎𝑉𝑏𝑉 ) ∧ ( 𝑝𝑉𝑞𝑉 ) ) → ( ( ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ = ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ ∧ 𝑤 = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) → 𝑤 = ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) ) )
61 52 60 syl5bi ( ( 𝜑 ∧ ( 𝑎𝑉𝑏𝑉 ) ∧ ( 𝑝𝑉𝑞𝑉 ) ) → ( ⟨ ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ , 𝑤 ⟩ = ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ → 𝑤 = ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) ) )
62 49 61 syl5bi ( ( 𝜑 ∧ ( 𝑎𝑉𝑏𝑉 ) ∧ ( 𝑝𝑉𝑞𝑉 ) ) → ( ⟨ ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ , 𝑤 ⟩ ∈ { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } → 𝑤 = ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) ) )
63 62 3expa ( ( ( 𝜑 ∧ ( 𝑎𝑉𝑏𝑉 ) ) ∧ ( 𝑝𝑉𝑞𝑉 ) ) → ( ⟨ ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ , 𝑤 ⟩ ∈ { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } → 𝑤 = ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) ) )
64 63 rexlimdvva ( ( 𝜑 ∧ ( 𝑎𝑉𝑏𝑉 ) ) → ( ∃ 𝑝𝑉𝑞𝑉 ⟨ ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ , 𝑤 ⟩ ∈ { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } → 𝑤 = ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) ) )
65 47 64 sylbid ( ( 𝜑 ∧ ( 𝑎𝑉𝑏𝑉 ) ) → ( ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ 𝑤𝑤 = ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) ) )
66 65 alrimiv ( ( 𝜑 ∧ ( 𝑎𝑉𝑏𝑉 ) ) → ∀ 𝑤 ( ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ 𝑤𝑤 = ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) ) )
67 mo2icl ( ∀ 𝑤 ( ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ 𝑤𝑤 = ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) ) → ∃* 𝑤 ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ 𝑤 )
68 66 67 syl ( ( 𝜑 ∧ ( 𝑎𝑉𝑏𝑉 ) ) → ∃* 𝑤 ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ 𝑤 )
69 68 ralrimivva ( 𝜑 → ∀ 𝑎𝑉𝑏𝑉 ∃* 𝑤 ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ 𝑤 )
70 fofn ( 𝐹 : 𝑉onto𝐵𝐹 Fn 𝑉 )
71 1 70 syl ( 𝜑𝐹 Fn 𝑉 )
72 opeq2 ( 𝑧 = ( 𝐹𝑏 ) → ⟨ ( 𝐹𝑎 ) , 𝑧 ⟩ = ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ )
73 72 breq1d ( 𝑧 = ( 𝐹𝑏 ) → ( ⟨ ( 𝐹𝑎 ) , 𝑧 𝑤 ↔ ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ 𝑤 ) )
74 73 mobidv ( 𝑧 = ( 𝐹𝑏 ) → ( ∃* 𝑤 ⟨ ( 𝐹𝑎 ) , 𝑧 𝑤 ↔ ∃* 𝑤 ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ 𝑤 ) )
75 74 ralrn ( 𝐹 Fn 𝑉 → ( ∀ 𝑧 ∈ ran 𝐹 ∃* 𝑤 ⟨ ( 𝐹𝑎 ) , 𝑧 𝑤 ↔ ∀ 𝑏𝑉 ∃* 𝑤 ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ 𝑤 ) )
76 71 75 syl ( 𝜑 → ( ∀ 𝑧 ∈ ran 𝐹 ∃* 𝑤 ⟨ ( 𝐹𝑎 ) , 𝑧 𝑤 ↔ ∀ 𝑏𝑉 ∃* 𝑤 ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ 𝑤 ) )
77 76 ralbidv ( 𝜑 → ( ∀ 𝑎𝑉𝑧 ∈ ran 𝐹 ∃* 𝑤 ⟨ ( 𝐹𝑎 ) , 𝑧 𝑤 ↔ ∀ 𝑎𝑉𝑏𝑉 ∃* 𝑤 ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ 𝑤 ) )
78 69 77 mpbird ( 𝜑 → ∀ 𝑎𝑉𝑧 ∈ ran 𝐹 ∃* 𝑤 ⟨ ( 𝐹𝑎 ) , 𝑧 𝑤 )
79 opeq1 ( 𝑦 = ( 𝐹𝑎 ) → ⟨ 𝑦 , 𝑧 ⟩ = ⟨ ( 𝐹𝑎 ) , 𝑧 ⟩ )
80 79 breq1d ( 𝑦 = ( 𝐹𝑎 ) → ( ⟨ 𝑦 , 𝑧 𝑤 ↔ ⟨ ( 𝐹𝑎 ) , 𝑧 𝑤 ) )
81 80 mobidv ( 𝑦 = ( 𝐹𝑎 ) → ( ∃* 𝑤𝑦 , 𝑧 𝑤 ↔ ∃* 𝑤 ⟨ ( 𝐹𝑎 ) , 𝑧 𝑤 ) )
82 81 ralbidv ( 𝑦 = ( 𝐹𝑎 ) → ( ∀ 𝑧 ∈ ran 𝐹 ∃* 𝑤𝑦 , 𝑧 𝑤 ↔ ∀ 𝑧 ∈ ran 𝐹 ∃* 𝑤 ⟨ ( 𝐹𝑎 ) , 𝑧 𝑤 ) )
83 82 ralrn ( 𝐹 Fn 𝑉 → ( ∀ 𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹 ∃* 𝑤𝑦 , 𝑧 𝑤 ↔ ∀ 𝑎𝑉𝑧 ∈ ran 𝐹 ∃* 𝑤 ⟨ ( 𝐹𝑎 ) , 𝑧 𝑤 ) )
84 71 83 syl ( 𝜑 → ( ∀ 𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹 ∃* 𝑤𝑦 , 𝑧 𝑤 ↔ ∀ 𝑎𝑉𝑧 ∈ ran 𝐹 ∃* 𝑤 ⟨ ( 𝐹𝑎 ) , 𝑧 𝑤 ) )
85 78 84 mpbird ( 𝜑 → ∀ 𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹 ∃* 𝑤𝑦 , 𝑧 𝑤 )
86 breq1 ( 𝑥 = ⟨ 𝑦 , 𝑧 ⟩ → ( 𝑥 𝑤 ↔ ⟨ 𝑦 , 𝑧 𝑤 ) )
87 86 mobidv ( 𝑥 = ⟨ 𝑦 , 𝑧 ⟩ → ( ∃* 𝑤 𝑥 𝑤 ↔ ∃* 𝑤𝑦 , 𝑧 𝑤 ) )
88 87 ralxp ( ∀ 𝑥 ∈ ( ran 𝐹 × ran 𝐹 ) ∃* 𝑤 𝑥 𝑤 ↔ ∀ 𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹 ∃* 𝑤𝑦 , 𝑧 𝑤 )
89 85 88 sylibr ( 𝜑 → ∀ 𝑥 ∈ ( ran 𝐹 × ran 𝐹 ) ∃* 𝑤 𝑥 𝑤 )
90 ssralv ( dom ⊆ ( ran 𝐹 × ran 𝐹 ) → ( ∀ 𝑥 ∈ ( ran 𝐹 × ran 𝐹 ) ∃* 𝑤 𝑥 𝑤 → ∀ 𝑥 ∈ dom ∃* 𝑤 𝑥 𝑤 ) )
91 39 89 90 sylc ( 𝜑 → ∀ 𝑥 ∈ dom ∃* 𝑤 𝑥 𝑤 )
92 dffun7 ( Fun ↔ ( Rel ∧ ∀ 𝑥 ∈ dom ∃* 𝑤 𝑥 𝑤 ) )
93 14 91 92 sylanbrc ( 𝜑 → Fun )
94 eqimss2 ( = 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } → 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } ⊆ )
95 3 94 syl ( 𝜑 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } ⊆ )
96 iunss ( 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } ⊆ ↔ ∀ 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } ⊆ )
97 95 96 sylib ( 𝜑 → ∀ 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } ⊆ )
98 iunss ( 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } ⊆ ↔ ∀ 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } ⊆ )
99 opex ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ ∈ V
100 99 snss ( ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ ∈ ↔ { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } ⊆ )
101 4 5 opeldm ( ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ ∈ → ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ ∈ dom )
102 100 101 sylbir ( { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } ⊆ → ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ ∈ dom )
103 102 ralimi ( ∀ 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } ⊆ → ∀ 𝑞𝑉 ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ ∈ dom )
104 98 103 sylbi ( 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } ⊆ → ∀ 𝑞𝑉 ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ ∈ dom )
105 104 ralimi ( ∀ 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ⟩ } ⊆ → ∀ 𝑝𝑉𝑞𝑉 ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ ∈ dom )
106 97 105 syl ( 𝜑 → ∀ 𝑝𝑉𝑞𝑉 ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ ∈ dom )
107 opeq2 ( 𝑧 = ( 𝐹𝑞 ) → ⟨ ( 𝐹𝑝 ) , 𝑧 ⟩ = ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ )
108 107 eleq1d ( 𝑧 = ( 𝐹𝑞 ) → ( ⟨ ( 𝐹𝑝 ) , 𝑧 ⟩ ∈ dom ↔ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ ∈ dom ) )
109 108 ralrn ( 𝐹 Fn 𝑉 → ( ∀ 𝑧 ∈ ran 𝐹 ⟨ ( 𝐹𝑝 ) , 𝑧 ⟩ ∈ dom ↔ ∀ 𝑞𝑉 ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ ∈ dom ) )
110 71 109 syl ( 𝜑 → ( ∀ 𝑧 ∈ ran 𝐹 ⟨ ( 𝐹𝑝 ) , 𝑧 ⟩ ∈ dom ↔ ∀ 𝑞𝑉 ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ ∈ dom ) )
111 110 ralbidv ( 𝜑 → ( ∀ 𝑝𝑉𝑧 ∈ ran 𝐹 ⟨ ( 𝐹𝑝 ) , 𝑧 ⟩ ∈ dom ↔ ∀ 𝑝𝑉𝑞𝑉 ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ ∈ dom ) )
112 106 111 mpbird ( 𝜑 → ∀ 𝑝𝑉𝑧 ∈ ran 𝐹 ⟨ ( 𝐹𝑝 ) , 𝑧 ⟩ ∈ dom )
113 opeq1 ( 𝑦 = ( 𝐹𝑝 ) → ⟨ 𝑦 , 𝑧 ⟩ = ⟨ ( 𝐹𝑝 ) , 𝑧 ⟩ )
114 113 eleq1d ( 𝑦 = ( 𝐹𝑝 ) → ( ⟨ 𝑦 , 𝑧 ⟩ ∈ dom ↔ ⟨ ( 𝐹𝑝 ) , 𝑧 ⟩ ∈ dom ) )
115 114 ralbidv ( 𝑦 = ( 𝐹𝑝 ) → ( ∀ 𝑧 ∈ ran 𝐹𝑦 , 𝑧 ⟩ ∈ dom ↔ ∀ 𝑧 ∈ ran 𝐹 ⟨ ( 𝐹𝑝 ) , 𝑧 ⟩ ∈ dom ) )
116 115 ralrn ( 𝐹 Fn 𝑉 → ( ∀ 𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹𝑦 , 𝑧 ⟩ ∈ dom ↔ ∀ 𝑝𝑉𝑧 ∈ ran 𝐹 ⟨ ( 𝐹𝑝 ) , 𝑧 ⟩ ∈ dom ) )
117 71 116 syl ( 𝜑 → ( ∀ 𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹𝑦 , 𝑧 ⟩ ∈ dom ↔ ∀ 𝑝𝑉𝑧 ∈ ran 𝐹 ⟨ ( 𝐹𝑝 ) , 𝑧 ⟩ ∈ dom ) )
118 112 117 mpbird ( 𝜑 → ∀ 𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹𝑦 , 𝑧 ⟩ ∈ dom )
119 eleq1 ( 𝑥 = ⟨ 𝑦 , 𝑧 ⟩ → ( 𝑥 ∈ dom ↔ ⟨ 𝑦 , 𝑧 ⟩ ∈ dom ) )
120 119 ralxp ( ∀ 𝑥 ∈ ( ran 𝐹 × ran 𝐹 ) 𝑥 ∈ dom ↔ ∀ 𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹𝑦 , 𝑧 ⟩ ∈ dom )
121 118 120 sylibr ( 𝜑 → ∀ 𝑥 ∈ ( ran 𝐹 × ran 𝐹 ) 𝑥 ∈ dom )
122 dfss3 ( ( ran 𝐹 × ran 𝐹 ) ⊆ dom ↔ ∀ 𝑥 ∈ ( ran 𝐹 × ran 𝐹 ) 𝑥 ∈ dom )
123 121 122 sylibr ( 𝜑 → ( ran 𝐹 × ran 𝐹 ) ⊆ dom )
124 38 123 eqsstrrd ( 𝜑 → ( 𝐵 × 𝐵 ) ⊆ dom )
125 35 124 eqssd ( 𝜑 → dom = ( 𝐵 × 𝐵 ) )
126 df-fn ( Fn ( 𝐵 × 𝐵 ) ↔ ( Fun ∧ dom = ( 𝐵 × 𝐵 ) ) )
127 93 125 126 sylanbrc ( 𝜑 Fn ( 𝐵 × 𝐵 ) )