Metamath Proof Explorer


Theorem imasdsf1o

Description: The distance function is transferred across an image structure under a bijection. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Hypotheses imasdsf1o.u ( 𝜑𝑈 = ( 𝐹s 𝑅 ) )
imasdsf1o.v ( 𝜑𝑉 = ( Base ‘ 𝑅 ) )
imasdsf1o.f ( 𝜑𝐹 : 𝑉1-1-onto𝐵 )
imasdsf1o.r ( 𝜑𝑅𝑍 )
imasdsf1o.e 𝐸 = ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) )
imasdsf1o.d 𝐷 = ( dist ‘ 𝑈 )
imasdsf1o.m ( 𝜑𝐸 ∈ ( ∞Met ‘ 𝑉 ) )
imasdsf1o.x ( 𝜑𝑋𝑉 )
imasdsf1o.y ( 𝜑𝑌𝑉 )
Assertion imasdsf1o ( 𝜑 → ( ( 𝐹𝑋 ) 𝐷 ( 𝐹𝑌 ) ) = ( 𝑋 𝐸 𝑌 ) )

Proof

Step Hyp Ref Expression
1 imasdsf1o.u ( 𝜑𝑈 = ( 𝐹s 𝑅 ) )
2 imasdsf1o.v ( 𝜑𝑉 = ( Base ‘ 𝑅 ) )
3 imasdsf1o.f ( 𝜑𝐹 : 𝑉1-1-onto𝐵 )
4 imasdsf1o.r ( 𝜑𝑅𝑍 )
5 imasdsf1o.e 𝐸 = ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) )
6 imasdsf1o.d 𝐷 = ( dist ‘ 𝑈 )
7 imasdsf1o.m ( 𝜑𝐸 ∈ ( ∞Met ‘ 𝑉 ) )
8 imasdsf1o.x ( 𝜑𝑋𝑉 )
9 imasdsf1o.y ( 𝜑𝑌𝑉 )
10 eqid ( ℝ*𝑠s ( ℝ* ∖ { -∞ } ) ) = ( ℝ*𝑠s ( ℝ* ∖ { -∞ } ) )
11 eqid { ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = ( 𝐹𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = ( 𝐹𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) } = { ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = ( 𝐹𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = ( 𝐹𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) }
12 eqid 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = ( 𝐹𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = ( 𝐹𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) = 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = ( 𝐹𝑋 ) ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = ( 𝐹𝑌 ) ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) )
13 1 2 3 4 5 6 7 8 9 10 11 12 imasdsf1olem ( 𝜑 → ( ( 𝐹𝑋 ) 𝐷 ( 𝐹𝑌 ) ) = ( 𝑋 𝐸 𝑌 ) )