| Step | Hyp | Ref | Expression | 
						
							| 1 |  | imasdsf1o.u | ⊢ ( 𝜑  →  𝑈  =  ( 𝐹  “s  𝑅 ) ) | 
						
							| 2 |  | imasdsf1o.v | ⊢ ( 𝜑  →  𝑉  =  ( Base ‘ 𝑅 ) ) | 
						
							| 3 |  | imasdsf1o.f | ⊢ ( 𝜑  →  𝐹 : 𝑉 –1-1-onto→ 𝐵 ) | 
						
							| 4 |  | imasdsf1o.r | ⊢ ( 𝜑  →  𝑅  ∈  𝑍 ) | 
						
							| 5 |  | imasdsf1o.e | ⊢ 𝐸  =  ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) | 
						
							| 6 |  | imasdsf1o.d | ⊢ 𝐷  =  ( dist ‘ 𝑈 ) | 
						
							| 7 |  | imasdsf1o.m | ⊢ ( 𝜑  →  𝐸  ∈  ( ∞Met ‘ 𝑉 ) ) | 
						
							| 8 |  | imasdsf1o.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 9 |  | imasdsf1o.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 10 |  | imasdsf1o.w | ⊢ 𝑊  =  ( ℝ*𝑠  ↾s  ( ℝ*  ∖  { -∞ } ) ) | 
						
							| 11 |  | imasdsf1o.s | ⊢ 𝑆  =  { ℎ  ∈  ( ( 𝑉  ×  𝑉 )  ↑m  ( 1 ... 𝑛 ) )  ∣  ( ( 𝐹 ‘ ( 1st  ‘ ( ℎ ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑋 )  ∧  ( 𝐹 ‘ ( 2nd  ‘ ( ℎ ‘ 𝑛 ) ) )  =  ( 𝐹 ‘ 𝑌 )  ∧  ∀ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝐹 ‘ ( 2nd  ‘ ( ℎ ‘ 𝑖 ) ) )  =  ( 𝐹 ‘ ( 1st  ‘ ( ℎ ‘ ( 𝑖  +  1 ) ) ) ) ) } | 
						
							| 12 |  | imasdsf1o.t | ⊢ 𝑇  =  ∪  𝑛  ∈  ℕ ran  ( 𝑔  ∈  𝑆  ↦  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) ) | 
						
							| 13 |  | f1ofo | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝐵  →  𝐹 : 𝑉 –onto→ 𝐵 ) | 
						
							| 14 | 3 13 | syl | ⊢ ( 𝜑  →  𝐹 : 𝑉 –onto→ 𝐵 ) | 
						
							| 15 |  | eqid | ⊢ ( dist ‘ 𝑅 )  =  ( dist ‘ 𝑅 ) | 
						
							| 16 |  | f1of | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝐵  →  𝐹 : 𝑉 ⟶ 𝐵 ) | 
						
							| 17 | 3 16 | syl | ⊢ ( 𝜑  →  𝐹 : 𝑉 ⟶ 𝐵 ) | 
						
							| 18 | 17 8 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑋 )  ∈  𝐵 ) | 
						
							| 19 | 17 9 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑌 )  ∈  𝐵 ) | 
						
							| 20 | 1 2 14 4 15 6 18 19 11 5 | imasdsval2 | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝑋 ) 𝐷 ( 𝐹 ‘ 𝑌 ) )  =  inf ( ∪  𝑛  ∈  ℕ ran  ( 𝑔  ∈  𝑆  ↦  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) ) ,  ℝ* ,   <  ) ) | 
						
							| 21 | 12 | infeq1i | ⊢ inf ( 𝑇 ,  ℝ* ,   <  )  =  inf ( ∪  𝑛  ∈  ℕ ran  ( 𝑔  ∈  𝑆  ↦  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) ) ,  ℝ* ,   <  ) | 
						
							| 22 | 20 21 | eqtr4di | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝑋 ) 𝐷 ( 𝐹 ‘ 𝑌 ) )  =  inf ( 𝑇 ,  ℝ* ,   <  ) ) | 
						
							| 23 |  | xrsbas | ⊢ ℝ*  =  ( Base ‘ ℝ*𝑠 ) | 
						
							| 24 |  | xrsadd | ⊢  +𝑒   =  ( +g ‘ ℝ*𝑠 ) | 
						
							| 25 |  | xrsex | ⊢ ℝ*𝑠  ∈  V | 
						
							| 26 | 25 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ℝ*𝑠  ∈  V ) | 
						
							| 27 |  | fzfid | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( 1 ... 𝑛 )  ∈  Fin ) | 
						
							| 28 |  | difss | ⊢ ( ℝ*  ∖  { -∞ } )  ⊆  ℝ* | 
						
							| 29 | 28 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( ℝ*  ∖  { -∞ } )  ⊆  ℝ* ) | 
						
							| 30 |  | xmetf | ⊢ ( 𝐸  ∈  ( ∞Met ‘ 𝑉 )  →  𝐸 : ( 𝑉  ×  𝑉 ) ⟶ ℝ* ) | 
						
							| 31 |  | ffn | ⊢ ( 𝐸 : ( 𝑉  ×  𝑉 ) ⟶ ℝ*  →  𝐸  Fn  ( 𝑉  ×  𝑉 ) ) | 
						
							| 32 | 7 30 31 | 3syl | ⊢ ( 𝜑  →  𝐸  Fn  ( 𝑉  ×  𝑉 ) ) | 
						
							| 33 |  | xmetcl | ⊢ ( ( 𝐸  ∈  ( ∞Met ‘ 𝑉 )  ∧  𝑓  ∈  𝑉  ∧  𝑔  ∈  𝑉 )  →  ( 𝑓 𝐸 𝑔 )  ∈  ℝ* ) | 
						
							| 34 |  | xmetge0 | ⊢ ( ( 𝐸  ∈  ( ∞Met ‘ 𝑉 )  ∧  𝑓  ∈  𝑉  ∧  𝑔  ∈  𝑉 )  →  0  ≤  ( 𝑓 𝐸 𝑔 ) ) | 
						
							| 35 |  | ge0nemnf | ⊢ ( ( ( 𝑓 𝐸 𝑔 )  ∈  ℝ*  ∧  0  ≤  ( 𝑓 𝐸 𝑔 ) )  →  ( 𝑓 𝐸 𝑔 )  ≠  -∞ ) | 
						
							| 36 | 33 34 35 | syl2anc | ⊢ ( ( 𝐸  ∈  ( ∞Met ‘ 𝑉 )  ∧  𝑓  ∈  𝑉  ∧  𝑔  ∈  𝑉 )  →  ( 𝑓 𝐸 𝑔 )  ≠  -∞ ) | 
						
							| 37 |  | eldifsn | ⊢ ( ( 𝑓 𝐸 𝑔 )  ∈  ( ℝ*  ∖  { -∞ } )  ↔  ( ( 𝑓 𝐸 𝑔 )  ∈  ℝ*  ∧  ( 𝑓 𝐸 𝑔 )  ≠  -∞ ) ) | 
						
							| 38 | 33 36 37 | sylanbrc | ⊢ ( ( 𝐸  ∈  ( ∞Met ‘ 𝑉 )  ∧  𝑓  ∈  𝑉  ∧  𝑔  ∈  𝑉 )  →  ( 𝑓 𝐸 𝑔 )  ∈  ( ℝ*  ∖  { -∞ } ) ) | 
						
							| 39 | 38 | 3expb | ⊢ ( ( 𝐸  ∈  ( ∞Met ‘ 𝑉 )  ∧  ( 𝑓  ∈  𝑉  ∧  𝑔  ∈  𝑉 ) )  →  ( 𝑓 𝐸 𝑔 )  ∈  ( ℝ*  ∖  { -∞ } ) ) | 
						
							| 40 | 7 39 | sylan | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝑉  ∧  𝑔  ∈  𝑉 ) )  →  ( 𝑓 𝐸 𝑔 )  ∈  ( ℝ*  ∖  { -∞ } ) ) | 
						
							| 41 | 40 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑓  ∈  𝑉 ∀ 𝑔  ∈  𝑉 ( 𝑓 𝐸 𝑔 )  ∈  ( ℝ*  ∖  { -∞ } ) ) | 
						
							| 42 |  | ffnov | ⊢ ( 𝐸 : ( 𝑉  ×  𝑉 ) ⟶ ( ℝ*  ∖  { -∞ } )  ↔  ( 𝐸  Fn  ( 𝑉  ×  𝑉 )  ∧  ∀ 𝑓  ∈  𝑉 ∀ 𝑔  ∈  𝑉 ( 𝑓 𝐸 𝑔 )  ∈  ( ℝ*  ∖  { -∞ } ) ) ) | 
						
							| 43 | 32 41 42 | sylanbrc | ⊢ ( 𝜑  →  𝐸 : ( 𝑉  ×  𝑉 ) ⟶ ( ℝ*  ∖  { -∞ } ) ) | 
						
							| 44 | 43 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  𝐸 : ( 𝑉  ×  𝑉 ) ⟶ ( ℝ*  ∖  { -∞ } ) ) | 
						
							| 45 | 11 | ssrab3 | ⊢ 𝑆  ⊆  ( ( 𝑉  ×  𝑉 )  ↑m  ( 1 ... 𝑛 ) ) | 
						
							| 46 | 45 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑆  ⊆  ( ( 𝑉  ×  𝑉 )  ↑m  ( 1 ... 𝑛 ) ) ) | 
						
							| 47 | 46 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  𝑔  ∈  ( ( 𝑉  ×  𝑉 )  ↑m  ( 1 ... 𝑛 ) ) ) | 
						
							| 48 |  | elmapi | ⊢ ( 𝑔  ∈  ( ( 𝑉  ×  𝑉 )  ↑m  ( 1 ... 𝑛 ) )  →  𝑔 : ( 1 ... 𝑛 ) ⟶ ( 𝑉  ×  𝑉 ) ) | 
						
							| 49 | 47 48 | syl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  𝑔 : ( 1 ... 𝑛 ) ⟶ ( 𝑉  ×  𝑉 ) ) | 
						
							| 50 |  | fco | ⊢ ( ( 𝐸 : ( 𝑉  ×  𝑉 ) ⟶ ( ℝ*  ∖  { -∞ } )  ∧  𝑔 : ( 1 ... 𝑛 ) ⟶ ( 𝑉  ×  𝑉 ) )  →  ( 𝐸  ∘  𝑔 ) : ( 1 ... 𝑛 ) ⟶ ( ℝ*  ∖  { -∞ } ) ) | 
						
							| 51 | 44 49 50 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( 𝐸  ∘  𝑔 ) : ( 1 ... 𝑛 ) ⟶ ( ℝ*  ∖  { -∞ } ) ) | 
						
							| 52 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 53 |  | rexr | ⊢ ( 0  ∈  ℝ  →  0  ∈  ℝ* ) | 
						
							| 54 |  | renemnf | ⊢ ( 0  ∈  ℝ  →  0  ≠  -∞ ) | 
						
							| 55 |  | eldifsn | ⊢ ( 0  ∈  ( ℝ*  ∖  { -∞ } )  ↔  ( 0  ∈  ℝ*  ∧  0  ≠  -∞ ) ) | 
						
							| 56 | 53 54 55 | sylanbrc | ⊢ ( 0  ∈  ℝ  →  0  ∈  ( ℝ*  ∖  { -∞ } ) ) | 
						
							| 57 | 52 56 | mp1i | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  0  ∈  ( ℝ*  ∖  { -∞ } ) ) | 
						
							| 58 |  | xaddlid | ⊢ ( 𝑥  ∈  ℝ*  →  ( 0  +𝑒  𝑥 )  =  𝑥 ) | 
						
							| 59 |  | xaddrid | ⊢ ( 𝑥  ∈  ℝ*  →  ( 𝑥  +𝑒  0 )  =  𝑥 ) | 
						
							| 60 | 58 59 | jca | ⊢ ( 𝑥  ∈  ℝ*  →  ( ( 0  +𝑒  𝑥 )  =  𝑥  ∧  ( 𝑥  +𝑒  0 )  =  𝑥 ) ) | 
						
							| 61 | 60 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  𝑥  ∈  ℝ* )  →  ( ( 0  +𝑒  𝑥 )  =  𝑥  ∧  ( 𝑥  +𝑒  0 )  =  𝑥 ) ) | 
						
							| 62 | 23 24 10 26 27 29 51 57 61 | gsumress | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) )  =  ( 𝑊  Σg  ( 𝐸  ∘  𝑔 ) ) ) | 
						
							| 63 | 10 23 | ressbas2 | ⊢ ( ( ℝ*  ∖  { -∞ } )  ⊆  ℝ*  →  ( ℝ*  ∖  { -∞ } )  =  ( Base ‘ 𝑊 ) ) | 
						
							| 64 | 28 63 | ax-mp | ⊢ ( ℝ*  ∖  { -∞ } )  =  ( Base ‘ 𝑊 ) | 
						
							| 65 | 10 | xrs10 | ⊢ 0  =  ( 0g ‘ 𝑊 ) | 
						
							| 66 | 10 | xrs1cmn | ⊢ 𝑊  ∈  CMnd | 
						
							| 67 | 66 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  𝑊  ∈  CMnd ) | 
						
							| 68 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 69 | 68 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  0  ∈  V ) | 
						
							| 70 | 51 27 69 | fdmfifsupp | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( 𝐸  ∘  𝑔 )  finSupp  0 ) | 
						
							| 71 | 64 65 67 27 51 70 | gsumcl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( 𝑊  Σg  ( 𝐸  ∘  𝑔 ) )  ∈  ( ℝ*  ∖  { -∞ } ) ) | 
						
							| 72 | 62 71 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) )  ∈  ( ℝ*  ∖  { -∞ } ) ) | 
						
							| 73 | 72 | eldifad | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) )  ∈  ℝ* ) | 
						
							| 74 | 73 | fmpttd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑔  ∈  𝑆  ↦  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) ) : 𝑆 ⟶ ℝ* ) | 
						
							| 75 | 74 | frnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ran  ( 𝑔  ∈  𝑆  ↦  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) )  ⊆  ℝ* ) | 
						
							| 76 | 75 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℕ ran  ( 𝑔  ∈  𝑆  ↦  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) )  ⊆  ℝ* ) | 
						
							| 77 |  | iunss | ⊢ ( ∪  𝑛  ∈  ℕ ran  ( 𝑔  ∈  𝑆  ↦  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) )  ⊆  ℝ*  ↔  ∀ 𝑛  ∈  ℕ ran  ( 𝑔  ∈  𝑆  ↦  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) )  ⊆  ℝ* ) | 
						
							| 78 | 76 77 | sylibr | ⊢ ( 𝜑  →  ∪  𝑛  ∈  ℕ ran  ( 𝑔  ∈  𝑆  ↦  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) )  ⊆  ℝ* ) | 
						
							| 79 | 12 78 | eqsstrid | ⊢ ( 𝜑  →  𝑇  ⊆  ℝ* ) | 
						
							| 80 |  | infxrcl | ⊢ ( 𝑇  ⊆  ℝ*  →  inf ( 𝑇 ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 81 | 79 80 | syl | ⊢ ( 𝜑  →  inf ( 𝑇 ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 82 |  | xmetcl | ⊢ ( ( 𝐸  ∈  ( ∞Met ‘ 𝑉 )  ∧  𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  →  ( 𝑋 𝐸 𝑌 )  ∈  ℝ* ) | 
						
							| 83 | 7 8 9 82 | syl3anc | ⊢ ( 𝜑  →  ( 𝑋 𝐸 𝑌 )  ∈  ℝ* ) | 
						
							| 84 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 85 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 86 |  | opex | ⊢ 〈 𝑋 ,  𝑌 〉  ∈  V | 
						
							| 87 | 85 86 | f1osn | ⊢ { 〈 1 ,  〈 𝑋 ,  𝑌 〉 〉 } : { 1 } –1-1-onto→ { 〈 𝑋 ,  𝑌 〉 } | 
						
							| 88 |  | f1of | ⊢ ( { 〈 1 ,  〈 𝑋 ,  𝑌 〉 〉 } : { 1 } –1-1-onto→ { 〈 𝑋 ,  𝑌 〉 }  →  { 〈 1 ,  〈 𝑋 ,  𝑌 〉 〉 } : { 1 } ⟶ { 〈 𝑋 ,  𝑌 〉 } ) | 
						
							| 89 | 87 88 | ax-mp | ⊢ { 〈 1 ,  〈 𝑋 ,  𝑌 〉 〉 } : { 1 } ⟶ { 〈 𝑋 ,  𝑌 〉 } | 
						
							| 90 | 8 9 | opelxpd | ⊢ ( 𝜑  →  〈 𝑋 ,  𝑌 〉  ∈  ( 𝑉  ×  𝑉 ) ) | 
						
							| 91 | 90 | snssd | ⊢ ( 𝜑  →  { 〈 𝑋 ,  𝑌 〉 }  ⊆  ( 𝑉  ×  𝑉 ) ) | 
						
							| 92 |  | fss | ⊢ ( ( { 〈 1 ,  〈 𝑋 ,  𝑌 〉 〉 } : { 1 } ⟶ { 〈 𝑋 ,  𝑌 〉 }  ∧  { 〈 𝑋 ,  𝑌 〉 }  ⊆  ( 𝑉  ×  𝑉 ) )  →  { 〈 1 ,  〈 𝑋 ,  𝑌 〉 〉 } : { 1 } ⟶ ( 𝑉  ×  𝑉 ) ) | 
						
							| 93 | 89 91 92 | sylancr | ⊢ ( 𝜑  →  { 〈 1 ,  〈 𝑋 ,  𝑌 〉 〉 } : { 1 } ⟶ ( 𝑉  ×  𝑉 ) ) | 
						
							| 94 | 7 | elfvexd | ⊢ ( 𝜑  →  𝑉  ∈  V ) | 
						
							| 95 | 94 94 | xpexd | ⊢ ( 𝜑  →  ( 𝑉  ×  𝑉 )  ∈  V ) | 
						
							| 96 |  | snex | ⊢ { 1 }  ∈  V | 
						
							| 97 |  | elmapg | ⊢ ( ( ( 𝑉  ×  𝑉 )  ∈  V  ∧  { 1 }  ∈  V )  →  ( { 〈 1 ,  〈 𝑋 ,  𝑌 〉 〉 }  ∈  ( ( 𝑉  ×  𝑉 )  ↑m  { 1 } )  ↔  { 〈 1 ,  〈 𝑋 ,  𝑌 〉 〉 } : { 1 } ⟶ ( 𝑉  ×  𝑉 ) ) ) | 
						
							| 98 | 95 96 97 | sylancl | ⊢ ( 𝜑  →  ( { 〈 1 ,  〈 𝑋 ,  𝑌 〉 〉 }  ∈  ( ( 𝑉  ×  𝑉 )  ↑m  { 1 } )  ↔  { 〈 1 ,  〈 𝑋 ,  𝑌 〉 〉 } : { 1 } ⟶ ( 𝑉  ×  𝑉 ) ) ) | 
						
							| 99 | 93 98 | mpbird | ⊢ ( 𝜑  →  { 〈 1 ,  〈 𝑋 ,  𝑌 〉 〉 }  ∈  ( ( 𝑉  ×  𝑉 )  ↑m  { 1 } ) ) | 
						
							| 100 |  | op1stg | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  →  ( 1st  ‘ 〈 𝑋 ,  𝑌 〉 )  =  𝑋 ) | 
						
							| 101 | 8 9 100 | syl2anc | ⊢ ( 𝜑  →  ( 1st  ‘ 〈 𝑋 ,  𝑌 〉 )  =  𝑋 ) | 
						
							| 102 | 101 | fveq2d | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 1st  ‘ 〈 𝑋 ,  𝑌 〉 ) )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 103 |  | op2ndg | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  →  ( 2nd  ‘ 〈 𝑋 ,  𝑌 〉 )  =  𝑌 ) | 
						
							| 104 | 8 9 103 | syl2anc | ⊢ ( 𝜑  →  ( 2nd  ‘ 〈 𝑋 ,  𝑌 〉 )  =  𝑌 ) | 
						
							| 105 | 104 | fveq2d | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 2nd  ‘ 〈 𝑋 ,  𝑌 〉 ) )  =  ( 𝐹 ‘ 𝑌 ) ) | 
						
							| 106 | 102 105 | jca | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ ( 1st  ‘ 〈 𝑋 ,  𝑌 〉 ) )  =  ( 𝐹 ‘ 𝑋 )  ∧  ( 𝐹 ‘ ( 2nd  ‘ 〈 𝑋 ,  𝑌 〉 ) )  =  ( 𝐹 ‘ 𝑌 ) ) ) | 
						
							| 107 | 25 | a1i | ⊢ ( 𝜑  →  ℝ*𝑠  ∈  V ) | 
						
							| 108 |  | snfi | ⊢ { 1 }  ∈  Fin | 
						
							| 109 | 108 | a1i | ⊢ ( 𝜑  →  { 1 }  ∈  Fin ) | 
						
							| 110 | 28 | a1i | ⊢ ( 𝜑  →  ( ℝ*  ∖  { -∞ } )  ⊆  ℝ* ) | 
						
							| 111 |  | xmetge0 | ⊢ ( ( 𝐸  ∈  ( ∞Met ‘ 𝑉 )  ∧  𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  →  0  ≤  ( 𝑋 𝐸 𝑌 ) ) | 
						
							| 112 | 7 8 9 111 | syl3anc | ⊢ ( 𝜑  →  0  ≤  ( 𝑋 𝐸 𝑌 ) ) | 
						
							| 113 |  | ge0nemnf | ⊢ ( ( ( 𝑋 𝐸 𝑌 )  ∈  ℝ*  ∧  0  ≤  ( 𝑋 𝐸 𝑌 ) )  →  ( 𝑋 𝐸 𝑌 )  ≠  -∞ ) | 
						
							| 114 | 83 112 113 | syl2anc | ⊢ ( 𝜑  →  ( 𝑋 𝐸 𝑌 )  ≠  -∞ ) | 
						
							| 115 |  | eldifsn | ⊢ ( ( 𝑋 𝐸 𝑌 )  ∈  ( ℝ*  ∖  { -∞ } )  ↔  ( ( 𝑋 𝐸 𝑌 )  ∈  ℝ*  ∧  ( 𝑋 𝐸 𝑌 )  ≠  -∞ ) ) | 
						
							| 116 | 83 114 115 | sylanbrc | ⊢ ( 𝜑  →  ( 𝑋 𝐸 𝑌 )  ∈  ( ℝ*  ∖  { -∞ } ) ) | 
						
							| 117 |  | fconst6g | ⊢ ( ( 𝑋 𝐸 𝑌 )  ∈  ( ℝ*  ∖  { -∞ } )  →  ( { 1 }  ×  { ( 𝑋 𝐸 𝑌 ) } ) : { 1 } ⟶ ( ℝ*  ∖  { -∞ } ) ) | 
						
							| 118 | 116 117 | syl | ⊢ ( 𝜑  →  ( { 1 }  ×  { ( 𝑋 𝐸 𝑌 ) } ) : { 1 } ⟶ ( ℝ*  ∖  { -∞ } ) ) | 
						
							| 119 |  | fcoconst | ⊢ ( ( 𝐸  Fn  ( 𝑉  ×  𝑉 )  ∧  〈 𝑋 ,  𝑌 〉  ∈  ( 𝑉  ×  𝑉 ) )  →  ( 𝐸  ∘  ( { 1 }  ×  { 〈 𝑋 ,  𝑌 〉 } ) )  =  ( { 1 }  ×  { ( 𝐸 ‘ 〈 𝑋 ,  𝑌 〉 ) } ) ) | 
						
							| 120 | 32 90 119 | syl2anc | ⊢ ( 𝜑  →  ( 𝐸  ∘  ( { 1 }  ×  { 〈 𝑋 ,  𝑌 〉 } ) )  =  ( { 1 }  ×  { ( 𝐸 ‘ 〈 𝑋 ,  𝑌 〉 ) } ) ) | 
						
							| 121 | 85 86 | xpsn | ⊢ ( { 1 }  ×  { 〈 𝑋 ,  𝑌 〉 } )  =  { 〈 1 ,  〈 𝑋 ,  𝑌 〉 〉 } | 
						
							| 122 | 121 | coeq2i | ⊢ ( 𝐸  ∘  ( { 1 }  ×  { 〈 𝑋 ,  𝑌 〉 } ) )  =  ( 𝐸  ∘  { 〈 1 ,  〈 𝑋 ,  𝑌 〉 〉 } ) | 
						
							| 123 |  | df-ov | ⊢ ( 𝑋 𝐸 𝑌 )  =  ( 𝐸 ‘ 〈 𝑋 ,  𝑌 〉 ) | 
						
							| 124 | 123 | eqcomi | ⊢ ( 𝐸 ‘ 〈 𝑋 ,  𝑌 〉 )  =  ( 𝑋 𝐸 𝑌 ) | 
						
							| 125 | 124 | sneqi | ⊢ { ( 𝐸 ‘ 〈 𝑋 ,  𝑌 〉 ) }  =  { ( 𝑋 𝐸 𝑌 ) } | 
						
							| 126 | 125 | xpeq2i | ⊢ ( { 1 }  ×  { ( 𝐸 ‘ 〈 𝑋 ,  𝑌 〉 ) } )  =  ( { 1 }  ×  { ( 𝑋 𝐸 𝑌 ) } ) | 
						
							| 127 | 120 122 126 | 3eqtr3g | ⊢ ( 𝜑  →  ( 𝐸  ∘  { 〈 1 ,  〈 𝑋 ,  𝑌 〉 〉 } )  =  ( { 1 }  ×  { ( 𝑋 𝐸 𝑌 ) } ) ) | 
						
							| 128 | 127 | feq1d | ⊢ ( 𝜑  →  ( ( 𝐸  ∘  { 〈 1 ,  〈 𝑋 ,  𝑌 〉 〉 } ) : { 1 } ⟶ ( ℝ*  ∖  { -∞ } )  ↔  ( { 1 }  ×  { ( 𝑋 𝐸 𝑌 ) } ) : { 1 } ⟶ ( ℝ*  ∖  { -∞ } ) ) ) | 
						
							| 129 | 118 128 | mpbird | ⊢ ( 𝜑  →  ( 𝐸  ∘  { 〈 1 ,  〈 𝑋 ,  𝑌 〉 〉 } ) : { 1 } ⟶ ( ℝ*  ∖  { -∞ } ) ) | 
						
							| 130 | 52 56 | mp1i | ⊢ ( 𝜑  →  0  ∈  ( ℝ*  ∖  { -∞ } ) ) | 
						
							| 131 | 60 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ* )  →  ( ( 0  +𝑒  𝑥 )  =  𝑥  ∧  ( 𝑥  +𝑒  0 )  =  𝑥 ) ) | 
						
							| 132 | 23 24 10 107 109 110 129 130 131 | gsumress | ⊢ ( 𝜑  →  ( ℝ*𝑠  Σg  ( 𝐸  ∘  { 〈 1 ,  〈 𝑋 ,  𝑌 〉 〉 } ) )  =  ( 𝑊  Σg  ( 𝐸  ∘  { 〈 1 ,  〈 𝑋 ,  𝑌 〉 〉 } ) ) ) | 
						
							| 133 |  | fconstmpt | ⊢ ( { 1 }  ×  { ( 𝑋 𝐸 𝑌 ) } )  =  ( 𝑗  ∈  { 1 }  ↦  ( 𝑋 𝐸 𝑌 ) ) | 
						
							| 134 | 127 133 | eqtrdi | ⊢ ( 𝜑  →  ( 𝐸  ∘  { 〈 1 ,  〈 𝑋 ,  𝑌 〉 〉 } )  =  ( 𝑗  ∈  { 1 }  ↦  ( 𝑋 𝐸 𝑌 ) ) ) | 
						
							| 135 | 134 | oveq2d | ⊢ ( 𝜑  →  ( 𝑊  Σg  ( 𝐸  ∘  { 〈 1 ,  〈 𝑋 ,  𝑌 〉 〉 } ) )  =  ( 𝑊  Σg  ( 𝑗  ∈  { 1 }  ↦  ( 𝑋 𝐸 𝑌 ) ) ) ) | 
						
							| 136 |  | cmnmnd | ⊢ ( 𝑊  ∈  CMnd  →  𝑊  ∈  Mnd ) | 
						
							| 137 | 66 136 | mp1i | ⊢ ( 𝜑  →  𝑊  ∈  Mnd ) | 
						
							| 138 | 84 | a1i | ⊢ ( 𝜑  →  1  ∈  ℕ ) | 
						
							| 139 |  | eqidd | ⊢ ( 𝑗  =  1  →  ( 𝑋 𝐸 𝑌 )  =  ( 𝑋 𝐸 𝑌 ) ) | 
						
							| 140 | 64 139 | gsumsn | ⊢ ( ( 𝑊  ∈  Mnd  ∧  1  ∈  ℕ  ∧  ( 𝑋 𝐸 𝑌 )  ∈  ( ℝ*  ∖  { -∞ } ) )  →  ( 𝑊  Σg  ( 𝑗  ∈  { 1 }  ↦  ( 𝑋 𝐸 𝑌 ) ) )  =  ( 𝑋 𝐸 𝑌 ) ) | 
						
							| 141 | 137 138 116 140 | syl3anc | ⊢ ( 𝜑  →  ( 𝑊  Σg  ( 𝑗  ∈  { 1 }  ↦  ( 𝑋 𝐸 𝑌 ) ) )  =  ( 𝑋 𝐸 𝑌 ) ) | 
						
							| 142 | 132 135 141 | 3eqtrrd | ⊢ ( 𝜑  →  ( 𝑋 𝐸 𝑌 )  =  ( ℝ*𝑠  Σg  ( 𝐸  ∘  { 〈 1 ,  〈 𝑋 ,  𝑌 〉 〉 } ) ) ) | 
						
							| 143 |  | fveq1 | ⊢ ( 𝑔  =  { 〈 1 ,  〈 𝑋 ,  𝑌 〉 〉 }  →  ( 𝑔 ‘ 1 )  =  ( { 〈 1 ,  〈 𝑋 ,  𝑌 〉 〉 } ‘ 1 ) ) | 
						
							| 144 | 85 86 | fvsn | ⊢ ( { 〈 1 ,  〈 𝑋 ,  𝑌 〉 〉 } ‘ 1 )  =  〈 𝑋 ,  𝑌 〉 | 
						
							| 145 | 143 144 | eqtrdi | ⊢ ( 𝑔  =  { 〈 1 ,  〈 𝑋 ,  𝑌 〉 〉 }  →  ( 𝑔 ‘ 1 )  =  〈 𝑋 ,  𝑌 〉 ) | 
						
							| 146 | 145 | fveq2d | ⊢ ( 𝑔  =  { 〈 1 ,  〈 𝑋 ,  𝑌 〉 〉 }  →  ( 1st  ‘ ( 𝑔 ‘ 1 ) )  =  ( 1st  ‘ 〈 𝑋 ,  𝑌 〉 ) ) | 
						
							| 147 | 146 | fveqeq2d | ⊢ ( 𝑔  =  { 〈 1 ,  〈 𝑋 ,  𝑌 〉 〉 }  →  ( ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑋 )  ↔  ( 𝐹 ‘ ( 1st  ‘ 〈 𝑋 ,  𝑌 〉 ) )  =  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 148 | 145 | fveq2d | ⊢ ( 𝑔  =  { 〈 1 ,  〈 𝑋 ,  𝑌 〉 〉 }  →  ( 2nd  ‘ ( 𝑔 ‘ 1 ) )  =  ( 2nd  ‘ 〈 𝑋 ,  𝑌 〉 ) ) | 
						
							| 149 | 148 | fveqeq2d | ⊢ ( 𝑔  =  { 〈 1 ,  〈 𝑋 ,  𝑌 〉 〉 }  →  ( ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑌 )  ↔  ( 𝐹 ‘ ( 2nd  ‘ 〈 𝑋 ,  𝑌 〉 ) )  =  ( 𝐹 ‘ 𝑌 ) ) ) | 
						
							| 150 | 147 149 | anbi12d | ⊢ ( 𝑔  =  { 〈 1 ,  〈 𝑋 ,  𝑌 〉 〉 }  →  ( ( ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑋 )  ∧  ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑌 ) )  ↔  ( ( 𝐹 ‘ ( 1st  ‘ 〈 𝑋 ,  𝑌 〉 ) )  =  ( 𝐹 ‘ 𝑋 )  ∧  ( 𝐹 ‘ ( 2nd  ‘ 〈 𝑋 ,  𝑌 〉 ) )  =  ( 𝐹 ‘ 𝑌 ) ) ) ) | 
						
							| 151 |  | coeq2 | ⊢ ( 𝑔  =  { 〈 1 ,  〈 𝑋 ,  𝑌 〉 〉 }  →  ( 𝐸  ∘  𝑔 )  =  ( 𝐸  ∘  { 〈 1 ,  〈 𝑋 ,  𝑌 〉 〉 } ) ) | 
						
							| 152 | 151 | oveq2d | ⊢ ( 𝑔  =  { 〈 1 ,  〈 𝑋 ,  𝑌 〉 〉 }  →  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) )  =  ( ℝ*𝑠  Σg  ( 𝐸  ∘  { 〈 1 ,  〈 𝑋 ,  𝑌 〉 〉 } ) ) ) | 
						
							| 153 | 152 | eqeq2d | ⊢ ( 𝑔  =  { 〈 1 ,  〈 𝑋 ,  𝑌 〉 〉 }  →  ( ( 𝑋 𝐸 𝑌 )  =  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) )  ↔  ( 𝑋 𝐸 𝑌 )  =  ( ℝ*𝑠  Σg  ( 𝐸  ∘  { 〈 1 ,  〈 𝑋 ,  𝑌 〉 〉 } ) ) ) ) | 
						
							| 154 | 150 153 | anbi12d | ⊢ ( 𝑔  =  { 〈 1 ,  〈 𝑋 ,  𝑌 〉 〉 }  →  ( ( ( ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑋 )  ∧  ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑌 ) )  ∧  ( 𝑋 𝐸 𝑌 )  =  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) )  ↔  ( ( ( 𝐹 ‘ ( 1st  ‘ 〈 𝑋 ,  𝑌 〉 ) )  =  ( 𝐹 ‘ 𝑋 )  ∧  ( 𝐹 ‘ ( 2nd  ‘ 〈 𝑋 ,  𝑌 〉 ) )  =  ( 𝐹 ‘ 𝑌 ) )  ∧  ( 𝑋 𝐸 𝑌 )  =  ( ℝ*𝑠  Σg  ( 𝐸  ∘  { 〈 1 ,  〈 𝑋 ,  𝑌 〉 〉 } ) ) ) ) ) | 
						
							| 155 | 154 | rspcev | ⊢ ( ( { 〈 1 ,  〈 𝑋 ,  𝑌 〉 〉 }  ∈  ( ( 𝑉  ×  𝑉 )  ↑m  { 1 } )  ∧  ( ( ( 𝐹 ‘ ( 1st  ‘ 〈 𝑋 ,  𝑌 〉 ) )  =  ( 𝐹 ‘ 𝑋 )  ∧  ( 𝐹 ‘ ( 2nd  ‘ 〈 𝑋 ,  𝑌 〉 ) )  =  ( 𝐹 ‘ 𝑌 ) )  ∧  ( 𝑋 𝐸 𝑌 )  =  ( ℝ*𝑠  Σg  ( 𝐸  ∘  { 〈 1 ,  〈 𝑋 ,  𝑌 〉 〉 } ) ) ) )  →  ∃ 𝑔  ∈  ( ( 𝑉  ×  𝑉 )  ↑m  { 1 } ) ( ( ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑋 )  ∧  ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑌 ) )  ∧  ( 𝑋 𝐸 𝑌 )  =  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) ) ) | 
						
							| 156 | 99 106 142 155 | syl12anc | ⊢ ( 𝜑  →  ∃ 𝑔  ∈  ( ( 𝑉  ×  𝑉 )  ↑m  { 1 } ) ( ( ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑋 )  ∧  ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑌 ) )  ∧  ( 𝑋 𝐸 𝑌 )  =  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) ) ) | 
						
							| 157 |  | ovex | ⊢ ( 𝑋 𝐸 𝑌 )  ∈  V | 
						
							| 158 |  | eqid | ⊢ ( 𝑔  ∈  𝑆  ↦  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) )  =  ( 𝑔  ∈  𝑆  ↦  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) ) | 
						
							| 159 | 158 | elrnmpt | ⊢ ( ( 𝑋 𝐸 𝑌 )  ∈  V  →  ( ( 𝑋 𝐸 𝑌 )  ∈  ran  ( 𝑔  ∈  𝑆  ↦  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) )  ↔  ∃ 𝑔  ∈  𝑆 ( 𝑋 𝐸 𝑌 )  =  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) ) ) | 
						
							| 160 | 157 159 | ax-mp | ⊢ ( ( 𝑋 𝐸 𝑌 )  ∈  ran  ( 𝑔  ∈  𝑆  ↦  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) )  ↔  ∃ 𝑔  ∈  𝑆 ( 𝑋 𝐸 𝑌 )  =  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) ) | 
						
							| 161 | 11 | rexeqi | ⊢ ( ∃ 𝑔  ∈  𝑆 ( 𝑋 𝐸 𝑌 )  =  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) )  ↔  ∃ 𝑔  ∈  { ℎ  ∈  ( ( 𝑉  ×  𝑉 )  ↑m  ( 1 ... 𝑛 ) )  ∣  ( ( 𝐹 ‘ ( 1st  ‘ ( ℎ ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑋 )  ∧  ( 𝐹 ‘ ( 2nd  ‘ ( ℎ ‘ 𝑛 ) ) )  =  ( 𝐹 ‘ 𝑌 )  ∧  ∀ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝐹 ‘ ( 2nd  ‘ ( ℎ ‘ 𝑖 ) ) )  =  ( 𝐹 ‘ ( 1st  ‘ ( ℎ ‘ ( 𝑖  +  1 ) ) ) ) ) } ( 𝑋 𝐸 𝑌 )  =  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) ) | 
						
							| 162 |  | fveq1 | ⊢ ( ℎ  =  𝑔  →  ( ℎ ‘ 1 )  =  ( 𝑔 ‘ 1 ) ) | 
						
							| 163 | 162 | fveq2d | ⊢ ( ℎ  =  𝑔  →  ( 1st  ‘ ( ℎ ‘ 1 ) )  =  ( 1st  ‘ ( 𝑔 ‘ 1 ) ) ) | 
						
							| 164 | 163 | fveqeq2d | ⊢ ( ℎ  =  𝑔  →  ( ( 𝐹 ‘ ( 1st  ‘ ( ℎ ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑋 )  ↔  ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 165 |  | fveq1 | ⊢ ( ℎ  =  𝑔  →  ( ℎ ‘ 𝑛 )  =  ( 𝑔 ‘ 𝑛 ) ) | 
						
							| 166 | 165 | fveq2d | ⊢ ( ℎ  =  𝑔  →  ( 2nd  ‘ ( ℎ ‘ 𝑛 ) )  =  ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) ) ) | 
						
							| 167 | 166 | fveqeq2d | ⊢ ( ℎ  =  𝑔  →  ( ( 𝐹 ‘ ( 2nd  ‘ ( ℎ ‘ 𝑛 ) ) )  =  ( 𝐹 ‘ 𝑌 )  ↔  ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) ) )  =  ( 𝐹 ‘ 𝑌 ) ) ) | 
						
							| 168 |  | fveq1 | ⊢ ( ℎ  =  𝑔  →  ( ℎ ‘ 𝑖 )  =  ( 𝑔 ‘ 𝑖 ) ) | 
						
							| 169 | 168 | fveq2d | ⊢ ( ℎ  =  𝑔  →  ( 2nd  ‘ ( ℎ ‘ 𝑖 ) )  =  ( 2nd  ‘ ( 𝑔 ‘ 𝑖 ) ) ) | 
						
							| 170 | 169 | fveq2d | ⊢ ( ℎ  =  𝑔  →  ( 𝐹 ‘ ( 2nd  ‘ ( ℎ ‘ 𝑖 ) ) )  =  ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) | 
						
							| 171 |  | fveq1 | ⊢ ( ℎ  =  𝑔  →  ( ℎ ‘ ( 𝑖  +  1 ) )  =  ( 𝑔 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 172 | 171 | fveq2d | ⊢ ( ℎ  =  𝑔  →  ( 1st  ‘ ( ℎ ‘ ( 𝑖  +  1 ) ) )  =  ( 1st  ‘ ( 𝑔 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 173 | 172 | fveq2d | ⊢ ( ℎ  =  𝑔  →  ( 𝐹 ‘ ( 1st  ‘ ( ℎ ‘ ( 𝑖  +  1 ) ) ) )  =  ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 174 | 170 173 | eqeq12d | ⊢ ( ℎ  =  𝑔  →  ( ( 𝐹 ‘ ( 2nd  ‘ ( ℎ ‘ 𝑖 ) ) )  =  ( 𝐹 ‘ ( 1st  ‘ ( ℎ ‘ ( 𝑖  +  1 ) ) ) )  ↔  ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑖 ) ) )  =  ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 175 | 174 | ralbidv | ⊢ ( ℎ  =  𝑔  →  ( ∀ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝐹 ‘ ( 2nd  ‘ ( ℎ ‘ 𝑖 ) ) )  =  ( 𝐹 ‘ ( 1st  ‘ ( ℎ ‘ ( 𝑖  +  1 ) ) ) )  ↔  ∀ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑖 ) ) )  =  ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 176 | 164 167 175 | 3anbi123d | ⊢ ( ℎ  =  𝑔  →  ( ( ( 𝐹 ‘ ( 1st  ‘ ( ℎ ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑋 )  ∧  ( 𝐹 ‘ ( 2nd  ‘ ( ℎ ‘ 𝑛 ) ) )  =  ( 𝐹 ‘ 𝑌 )  ∧  ∀ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝐹 ‘ ( 2nd  ‘ ( ℎ ‘ 𝑖 ) ) )  =  ( 𝐹 ‘ ( 1st  ‘ ( ℎ ‘ ( 𝑖  +  1 ) ) ) ) )  ↔  ( ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑋 )  ∧  ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) ) )  =  ( 𝐹 ‘ 𝑌 )  ∧  ∀ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑖 ) ) )  =  ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ ( 𝑖  +  1 ) ) ) ) ) ) ) | 
						
							| 177 | 176 | rexrab | ⊢ ( ∃ 𝑔  ∈  { ℎ  ∈  ( ( 𝑉  ×  𝑉 )  ↑m  ( 1 ... 𝑛 ) )  ∣  ( ( 𝐹 ‘ ( 1st  ‘ ( ℎ ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑋 )  ∧  ( 𝐹 ‘ ( 2nd  ‘ ( ℎ ‘ 𝑛 ) ) )  =  ( 𝐹 ‘ 𝑌 )  ∧  ∀ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝐹 ‘ ( 2nd  ‘ ( ℎ ‘ 𝑖 ) ) )  =  ( 𝐹 ‘ ( 1st  ‘ ( ℎ ‘ ( 𝑖  +  1 ) ) ) ) ) } ( 𝑋 𝐸 𝑌 )  =  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) )  ↔  ∃ 𝑔  ∈  ( ( 𝑉  ×  𝑉 )  ↑m  ( 1 ... 𝑛 ) ) ( ( ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑋 )  ∧  ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) ) )  =  ( 𝐹 ‘ 𝑌 )  ∧  ∀ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑖 ) ) )  =  ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ ( 𝑖  +  1 ) ) ) ) )  ∧  ( 𝑋 𝐸 𝑌 )  =  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) ) ) | 
						
							| 178 | 161 177 | bitri | ⊢ ( ∃ 𝑔  ∈  𝑆 ( 𝑋 𝐸 𝑌 )  =  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) )  ↔  ∃ 𝑔  ∈  ( ( 𝑉  ×  𝑉 )  ↑m  ( 1 ... 𝑛 ) ) ( ( ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑋 )  ∧  ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) ) )  =  ( 𝐹 ‘ 𝑌 )  ∧  ∀ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑖 ) ) )  =  ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ ( 𝑖  +  1 ) ) ) ) )  ∧  ( 𝑋 𝐸 𝑌 )  =  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) ) ) | 
						
							| 179 |  | oveq2 | ⊢ ( 𝑛  =  1  →  ( 1 ... 𝑛 )  =  ( 1 ... 1 ) ) | 
						
							| 180 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 181 |  | fzsn | ⊢ ( 1  ∈  ℤ  →  ( 1 ... 1 )  =  { 1 } ) | 
						
							| 182 | 180 181 | ax-mp | ⊢ ( 1 ... 1 )  =  { 1 } | 
						
							| 183 | 179 182 | eqtrdi | ⊢ ( 𝑛  =  1  →  ( 1 ... 𝑛 )  =  { 1 } ) | 
						
							| 184 | 183 | oveq2d | ⊢ ( 𝑛  =  1  →  ( ( 𝑉  ×  𝑉 )  ↑m  ( 1 ... 𝑛 ) )  =  ( ( 𝑉  ×  𝑉 )  ↑m  { 1 } ) ) | 
						
							| 185 |  | df-3an | ⊢ ( ( ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑋 )  ∧  ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) ) )  =  ( 𝐹 ‘ 𝑌 )  ∧  ∀ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑖 ) ) )  =  ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ ( 𝑖  +  1 ) ) ) ) )  ↔  ( ( ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑋 )  ∧  ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) ) )  =  ( 𝐹 ‘ 𝑌 ) )  ∧  ∀ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑖 ) ) )  =  ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 186 |  | ral0 | ⊢ ∀ 𝑖  ∈  ∅ ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑖 ) ) )  =  ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 187 |  | oveq1 | ⊢ ( 𝑛  =  1  →  ( 𝑛  −  1 )  =  ( 1  −  1 ) ) | 
						
							| 188 |  | 1m1e0 | ⊢ ( 1  −  1 )  =  0 | 
						
							| 189 | 187 188 | eqtrdi | ⊢ ( 𝑛  =  1  →  ( 𝑛  −  1 )  =  0 ) | 
						
							| 190 | 189 | oveq2d | ⊢ ( 𝑛  =  1  →  ( 1 ... ( 𝑛  −  1 ) )  =  ( 1 ... 0 ) ) | 
						
							| 191 |  | fz10 | ⊢ ( 1 ... 0 )  =  ∅ | 
						
							| 192 | 190 191 | eqtrdi | ⊢ ( 𝑛  =  1  →  ( 1 ... ( 𝑛  −  1 ) )  =  ∅ ) | 
						
							| 193 | 192 | raleqdv | ⊢ ( 𝑛  =  1  →  ( ∀ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑖 ) ) )  =  ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ ( 𝑖  +  1 ) ) ) )  ↔  ∀ 𝑖  ∈  ∅ ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑖 ) ) )  =  ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 194 | 186 193 | mpbiri | ⊢ ( 𝑛  =  1  →  ∀ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑖 ) ) )  =  ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 195 | 194 | biantrud | ⊢ ( 𝑛  =  1  →  ( ( ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑋 )  ∧  ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) ) )  =  ( 𝐹 ‘ 𝑌 ) )  ↔  ( ( ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑋 )  ∧  ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) ) )  =  ( 𝐹 ‘ 𝑌 ) )  ∧  ∀ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑖 ) ) )  =  ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ ( 𝑖  +  1 ) ) ) ) ) ) ) | 
						
							| 196 |  | 2fveq3 | ⊢ ( 𝑛  =  1  →  ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) )  =  ( 2nd  ‘ ( 𝑔 ‘ 1 ) ) ) | 
						
							| 197 | 196 | fveqeq2d | ⊢ ( 𝑛  =  1  →  ( ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) ) )  =  ( 𝐹 ‘ 𝑌 )  ↔  ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑌 ) ) ) | 
						
							| 198 | 197 | anbi2d | ⊢ ( 𝑛  =  1  →  ( ( ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑋 )  ∧  ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) ) )  =  ( 𝐹 ‘ 𝑌 ) )  ↔  ( ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑋 )  ∧  ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑌 ) ) ) ) | 
						
							| 199 | 195 198 | bitr3d | ⊢ ( 𝑛  =  1  →  ( ( ( ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑋 )  ∧  ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) ) )  =  ( 𝐹 ‘ 𝑌 ) )  ∧  ∀ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑖 ) ) )  =  ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ ( 𝑖  +  1 ) ) ) ) )  ↔  ( ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑋 )  ∧  ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑌 ) ) ) ) | 
						
							| 200 | 185 199 | bitrid | ⊢ ( 𝑛  =  1  →  ( ( ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑋 )  ∧  ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) ) )  =  ( 𝐹 ‘ 𝑌 )  ∧  ∀ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑖 ) ) )  =  ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ ( 𝑖  +  1 ) ) ) ) )  ↔  ( ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑋 )  ∧  ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑌 ) ) ) ) | 
						
							| 201 | 200 | anbi1d | ⊢ ( 𝑛  =  1  →  ( ( ( ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑋 )  ∧  ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) ) )  =  ( 𝐹 ‘ 𝑌 )  ∧  ∀ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑖 ) ) )  =  ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ ( 𝑖  +  1 ) ) ) ) )  ∧  ( 𝑋 𝐸 𝑌 )  =  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) )  ↔  ( ( ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑋 )  ∧  ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑌 ) )  ∧  ( 𝑋 𝐸 𝑌 )  =  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) ) ) ) | 
						
							| 202 | 184 201 | rexeqbidv | ⊢ ( 𝑛  =  1  →  ( ∃ 𝑔  ∈  ( ( 𝑉  ×  𝑉 )  ↑m  ( 1 ... 𝑛 ) ) ( ( ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑋 )  ∧  ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) ) )  =  ( 𝐹 ‘ 𝑌 )  ∧  ∀ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑖 ) ) )  =  ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ ( 𝑖  +  1 ) ) ) ) )  ∧  ( 𝑋 𝐸 𝑌 )  =  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) )  ↔  ∃ 𝑔  ∈  ( ( 𝑉  ×  𝑉 )  ↑m  { 1 } ) ( ( ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑋 )  ∧  ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑌 ) )  ∧  ( 𝑋 𝐸 𝑌 )  =  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) ) ) ) | 
						
							| 203 | 178 202 | bitrid | ⊢ ( 𝑛  =  1  →  ( ∃ 𝑔  ∈  𝑆 ( 𝑋 𝐸 𝑌 )  =  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) )  ↔  ∃ 𝑔  ∈  ( ( 𝑉  ×  𝑉 )  ↑m  { 1 } ) ( ( ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑋 )  ∧  ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑌 ) )  ∧  ( 𝑋 𝐸 𝑌 )  =  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) ) ) ) | 
						
							| 204 | 160 203 | bitrid | ⊢ ( 𝑛  =  1  →  ( ( 𝑋 𝐸 𝑌 )  ∈  ran  ( 𝑔  ∈  𝑆  ↦  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) )  ↔  ∃ 𝑔  ∈  ( ( 𝑉  ×  𝑉 )  ↑m  { 1 } ) ( ( ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑋 )  ∧  ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑌 ) )  ∧  ( 𝑋 𝐸 𝑌 )  =  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) ) ) ) | 
						
							| 205 | 204 | rspcev | ⊢ ( ( 1  ∈  ℕ  ∧  ∃ 𝑔  ∈  ( ( 𝑉  ×  𝑉 )  ↑m  { 1 } ) ( ( ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑋 )  ∧  ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑌 ) )  ∧  ( 𝑋 𝐸 𝑌 )  =  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) ) )  →  ∃ 𝑛  ∈  ℕ ( 𝑋 𝐸 𝑌 )  ∈  ran  ( 𝑔  ∈  𝑆  ↦  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) ) ) | 
						
							| 206 | 84 156 205 | sylancr | ⊢ ( 𝜑  →  ∃ 𝑛  ∈  ℕ ( 𝑋 𝐸 𝑌 )  ∈  ran  ( 𝑔  ∈  𝑆  ↦  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) ) ) | 
						
							| 207 |  | eliun | ⊢ ( ( 𝑋 𝐸 𝑌 )  ∈  ∪  𝑛  ∈  ℕ ran  ( 𝑔  ∈  𝑆  ↦  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) )  ↔  ∃ 𝑛  ∈  ℕ ( 𝑋 𝐸 𝑌 )  ∈  ran  ( 𝑔  ∈  𝑆  ↦  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) ) ) | 
						
							| 208 | 206 207 | sylibr | ⊢ ( 𝜑  →  ( 𝑋 𝐸 𝑌 )  ∈  ∪  𝑛  ∈  ℕ ran  ( 𝑔  ∈  𝑆  ↦  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) ) ) | 
						
							| 209 | 208 12 | eleqtrrdi | ⊢ ( 𝜑  →  ( 𝑋 𝐸 𝑌 )  ∈  𝑇 ) | 
						
							| 210 |  | infxrlb | ⊢ ( ( 𝑇  ⊆  ℝ*  ∧  ( 𝑋 𝐸 𝑌 )  ∈  𝑇 )  →  inf ( 𝑇 ,  ℝ* ,   <  )  ≤  ( 𝑋 𝐸 𝑌 ) ) | 
						
							| 211 | 79 209 210 | syl2anc | ⊢ ( 𝜑  →  inf ( 𝑇 ,  ℝ* ,   <  )  ≤  ( 𝑋 𝐸 𝑌 ) ) | 
						
							| 212 | 12 | eleq2i | ⊢ ( 𝑝  ∈  𝑇  ↔  𝑝  ∈  ∪  𝑛  ∈  ℕ ran  ( 𝑔  ∈  𝑆  ↦  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) ) ) | 
						
							| 213 |  | eliun | ⊢ ( 𝑝  ∈  ∪  𝑛  ∈  ℕ ran  ( 𝑔  ∈  𝑆  ↦  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) )  ↔  ∃ 𝑛  ∈  ℕ 𝑝  ∈  ran  ( 𝑔  ∈  𝑆  ↦  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) ) ) | 
						
							| 214 | 212 213 | bitri | ⊢ ( 𝑝  ∈  𝑇  ↔  ∃ 𝑛  ∈  ℕ 𝑝  ∈  ran  ( 𝑔  ∈  𝑆  ↦  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) ) ) | 
						
							| 215 | 158 | elrnmpt | ⊢ ( 𝑝  ∈  V  →  ( 𝑝  ∈  ran  ( 𝑔  ∈  𝑆  ↦  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) )  ↔  ∃ 𝑔  ∈  𝑆 𝑝  =  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) ) ) | 
						
							| 216 | 215 | elv | ⊢ ( 𝑝  ∈  ran  ( 𝑔  ∈  𝑆  ↦  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) )  ↔  ∃ 𝑔  ∈  𝑆 𝑝  =  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) ) | 
						
							| 217 | 176 11 | elrab2 | ⊢ ( 𝑔  ∈  𝑆  ↔  ( 𝑔  ∈  ( ( 𝑉  ×  𝑉 )  ↑m  ( 1 ... 𝑛 ) )  ∧  ( ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑋 )  ∧  ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) ) )  =  ( 𝐹 ‘ 𝑌 )  ∧  ∀ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑖 ) ) )  =  ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ ( 𝑖  +  1 ) ) ) ) ) ) ) | 
						
							| 218 | 217 | simprbi | ⊢ ( 𝑔  ∈  𝑆  →  ( ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑋 )  ∧  ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) ) )  =  ( 𝐹 ‘ 𝑌 )  ∧  ∀ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑖 ) ) )  =  ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 219 | 218 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑋 )  ∧  ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) ) )  =  ( 𝐹 ‘ 𝑌 )  ∧  ∀ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑖 ) ) )  =  ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 220 | 219 | simp2d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) ) )  =  ( 𝐹 ‘ 𝑌 ) ) | 
						
							| 221 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  𝐹 : 𝑉 –1-1-onto→ 𝐵 ) | 
						
							| 222 |  | f1of1 | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝐵  →  𝐹 : 𝑉 –1-1→ 𝐵 ) | 
						
							| 223 | 221 222 | syl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  𝐹 : 𝑉 –1-1→ 𝐵 ) | 
						
							| 224 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  𝑛  ∈  ℕ ) | 
						
							| 225 |  | elfz1end | ⊢ ( 𝑛  ∈  ℕ  ↔  𝑛  ∈  ( 1 ... 𝑛 ) ) | 
						
							| 226 | 224 225 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  𝑛  ∈  ( 1 ... 𝑛 ) ) | 
						
							| 227 | 49 226 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( 𝑔 ‘ 𝑛 )  ∈  ( 𝑉  ×  𝑉 ) ) | 
						
							| 228 |  | xp2nd | ⊢ ( ( 𝑔 ‘ 𝑛 )  ∈  ( 𝑉  ×  𝑉 )  →  ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) )  ∈  𝑉 ) | 
						
							| 229 | 227 228 | syl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) )  ∈  𝑉 ) | 
						
							| 230 | 9 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  𝑌  ∈  𝑉 ) | 
						
							| 231 |  | f1fveq | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝐵  ∧  ( ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) )  ∈  𝑉  ∧  𝑌  ∈  𝑉 ) )  →  ( ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) ) )  =  ( 𝐹 ‘ 𝑌 )  ↔  ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) )  =  𝑌 ) ) | 
						
							| 232 | 223 229 230 231 | syl12anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) ) )  =  ( 𝐹 ‘ 𝑌 )  ↔  ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) )  =  𝑌 ) ) | 
						
							| 233 | 220 232 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) )  =  𝑌 ) | 
						
							| 234 | 233 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) ) )  =  ( 𝑋 𝐸 𝑌 ) ) | 
						
							| 235 |  | eleq1 | ⊢ ( 𝑚  =  1  →  ( 𝑚  ∈  ( 1 ... 𝑛 )  ↔  1  ∈  ( 1 ... 𝑛 ) ) ) | 
						
							| 236 |  | 2fveq3 | ⊢ ( 𝑚  =  1  →  ( 2nd  ‘ ( 𝑔 ‘ 𝑚 ) )  =  ( 2nd  ‘ ( 𝑔 ‘ 1 ) ) ) | 
						
							| 237 | 236 | oveq2d | ⊢ ( 𝑚  =  1  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑚 ) ) )  =  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 1 ) ) ) ) | 
						
							| 238 |  | oveq2 | ⊢ ( 𝑚  =  1  →  ( 1 ... 𝑚 )  =  ( 1 ... 1 ) ) | 
						
							| 239 | 238 182 | eqtrdi | ⊢ ( 𝑚  =  1  →  ( 1 ... 𝑚 )  =  { 1 } ) | 
						
							| 240 | 239 | reseq2d | ⊢ ( 𝑚  =  1  →  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑚 ) )  =  ( ( 𝐸  ∘  𝑔 )  ↾  { 1 } ) ) | 
						
							| 241 | 240 | oveq2d | ⊢ ( 𝑚  =  1  →  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑚 ) ) )  =  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  { 1 } ) ) ) | 
						
							| 242 | 237 241 | breq12d | ⊢ ( 𝑚  =  1  →  ( ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑚 ) ) )  ≤  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑚 ) ) )  ↔  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 1 ) ) )  ≤  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  { 1 } ) ) ) ) | 
						
							| 243 | 235 242 | imbi12d | ⊢ ( 𝑚  =  1  →  ( ( 𝑚  ∈  ( 1 ... 𝑛 )  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑚 ) ) )  ≤  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑚 ) ) ) )  ↔  ( 1  ∈  ( 1 ... 𝑛 )  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 1 ) ) )  ≤  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  { 1 } ) ) ) ) ) | 
						
							| 244 | 243 | imbi2d | ⊢ ( 𝑚  =  1  →  ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( 𝑚  ∈  ( 1 ... 𝑛 )  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑚 ) ) )  ≤  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑚 ) ) ) ) )  ↔  ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( 1  ∈  ( 1 ... 𝑛 )  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 1 ) ) )  ≤  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  { 1 } ) ) ) ) ) ) | 
						
							| 245 |  | eleq1 | ⊢ ( 𝑚  =  𝑥  →  ( 𝑚  ∈  ( 1 ... 𝑛 )  ↔  𝑥  ∈  ( 1 ... 𝑛 ) ) ) | 
						
							| 246 |  | 2fveq3 | ⊢ ( 𝑚  =  𝑥  →  ( 2nd  ‘ ( 𝑔 ‘ 𝑚 ) )  =  ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) ) | 
						
							| 247 | 246 | oveq2d | ⊢ ( 𝑚  =  𝑥  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑚 ) ) )  =  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) ) ) | 
						
							| 248 |  | oveq2 | ⊢ ( 𝑚  =  𝑥  →  ( 1 ... 𝑚 )  =  ( 1 ... 𝑥 ) ) | 
						
							| 249 | 248 | reseq2d | ⊢ ( 𝑚  =  𝑥  →  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑚 ) )  =  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑥 ) ) ) | 
						
							| 250 | 249 | oveq2d | ⊢ ( 𝑚  =  𝑥  →  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑚 ) ) )  =  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑥 ) ) ) ) | 
						
							| 251 | 247 250 | breq12d | ⊢ ( 𝑚  =  𝑥  →  ( ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑚 ) ) )  ≤  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑚 ) ) )  ↔  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) )  ≤  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑥 ) ) ) ) ) | 
						
							| 252 | 245 251 | imbi12d | ⊢ ( 𝑚  =  𝑥  →  ( ( 𝑚  ∈  ( 1 ... 𝑛 )  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑚 ) ) )  ≤  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑚 ) ) ) )  ↔  ( 𝑥  ∈  ( 1 ... 𝑛 )  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) )  ≤  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑥 ) ) ) ) ) ) | 
						
							| 253 | 252 | imbi2d | ⊢ ( 𝑚  =  𝑥  →  ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( 𝑚  ∈  ( 1 ... 𝑛 )  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑚 ) ) )  ≤  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑚 ) ) ) ) )  ↔  ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( 𝑥  ∈  ( 1 ... 𝑛 )  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) )  ≤  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑥 ) ) ) ) ) ) ) | 
						
							| 254 |  | eleq1 | ⊢ ( 𝑚  =  ( 𝑥  +  1 )  →  ( 𝑚  ∈  ( 1 ... 𝑛 )  ↔  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) ) | 
						
							| 255 |  | 2fveq3 | ⊢ ( 𝑚  =  ( 𝑥  +  1 )  →  ( 2nd  ‘ ( 𝑔 ‘ 𝑚 ) )  =  ( 2nd  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) ) | 
						
							| 256 | 255 | oveq2d | ⊢ ( 𝑚  =  ( 𝑥  +  1 )  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑚 ) ) )  =  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) ) ) | 
						
							| 257 |  | oveq2 | ⊢ ( 𝑚  =  ( 𝑥  +  1 )  →  ( 1 ... 𝑚 )  =  ( 1 ... ( 𝑥  +  1 ) ) ) | 
						
							| 258 | 257 | reseq2d | ⊢ ( 𝑚  =  ( 𝑥  +  1 )  →  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑚 ) )  =  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... ( 𝑥  +  1 ) ) ) ) | 
						
							| 259 | 258 | oveq2d | ⊢ ( 𝑚  =  ( 𝑥  +  1 )  →  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑚 ) ) )  =  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... ( 𝑥  +  1 ) ) ) ) ) | 
						
							| 260 | 256 259 | breq12d | ⊢ ( 𝑚  =  ( 𝑥  +  1 )  →  ( ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑚 ) ) )  ≤  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑚 ) ) )  ↔  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) )  ≤  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... ( 𝑥  +  1 ) ) ) ) ) ) | 
						
							| 261 | 254 260 | imbi12d | ⊢ ( 𝑚  =  ( 𝑥  +  1 )  →  ( ( 𝑚  ∈  ( 1 ... 𝑛 )  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑚 ) ) )  ≤  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑚 ) ) ) )  ↔  ( ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 )  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) )  ≤  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... ( 𝑥  +  1 ) ) ) ) ) ) ) | 
						
							| 262 | 261 | imbi2d | ⊢ ( 𝑚  =  ( 𝑥  +  1 )  →  ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( 𝑚  ∈  ( 1 ... 𝑛 )  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑚 ) ) )  ≤  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑚 ) ) ) ) )  ↔  ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 )  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) )  ≤  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... ( 𝑥  +  1 ) ) ) ) ) ) ) ) | 
						
							| 263 |  | eleq1 | ⊢ ( 𝑚  =  𝑛  →  ( 𝑚  ∈  ( 1 ... 𝑛 )  ↔  𝑛  ∈  ( 1 ... 𝑛 ) ) ) | 
						
							| 264 |  | 2fveq3 | ⊢ ( 𝑚  =  𝑛  →  ( 2nd  ‘ ( 𝑔 ‘ 𝑚 ) )  =  ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) ) ) | 
						
							| 265 | 264 | oveq2d | ⊢ ( 𝑚  =  𝑛  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑚 ) ) )  =  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) | 
						
							| 266 |  | oveq2 | ⊢ ( 𝑚  =  𝑛  →  ( 1 ... 𝑚 )  =  ( 1 ... 𝑛 ) ) | 
						
							| 267 | 266 | reseq2d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑚 ) )  =  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑛 ) ) ) | 
						
							| 268 | 267 | oveq2d | ⊢ ( 𝑚  =  𝑛  →  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑚 ) ) )  =  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑛 ) ) ) ) | 
						
							| 269 | 265 268 | breq12d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑚 ) ) )  ≤  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑚 ) ) )  ↔  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) ) )  ≤  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑛 ) ) ) ) ) | 
						
							| 270 | 263 269 | imbi12d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝑚  ∈  ( 1 ... 𝑛 )  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑚 ) ) )  ≤  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑚 ) ) ) )  ↔  ( 𝑛  ∈  ( 1 ... 𝑛 )  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) ) )  ≤  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑛 ) ) ) ) ) ) | 
						
							| 271 | 270 | imbi2d | ⊢ ( 𝑚  =  𝑛  →  ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( 𝑚  ∈  ( 1 ... 𝑛 )  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑚 ) ) )  ≤  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑚 ) ) ) ) )  ↔  ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( 𝑛  ∈  ( 1 ... 𝑛 )  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) ) )  ≤  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑛 ) ) ) ) ) ) ) | 
						
							| 272 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  𝐸  ∈  ( ∞Met ‘ 𝑉 ) ) | 
						
							| 273 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  𝑋  ∈  𝑉 ) | 
						
							| 274 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 275 | 224 274 | eleqtrdi | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  𝑛  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 276 |  | eluzfz1 | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 1 )  →  1  ∈  ( 1 ... 𝑛 ) ) | 
						
							| 277 | 275 276 | syl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  1  ∈  ( 1 ... 𝑛 ) ) | 
						
							| 278 | 49 277 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( 𝑔 ‘ 1 )  ∈  ( 𝑉  ×  𝑉 ) ) | 
						
							| 279 |  | xp2nd | ⊢ ( ( 𝑔 ‘ 1 )  ∈  ( 𝑉  ×  𝑉 )  →  ( 2nd  ‘ ( 𝑔 ‘ 1 ) )  ∈  𝑉 ) | 
						
							| 280 | 278 279 | syl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( 2nd  ‘ ( 𝑔 ‘ 1 ) )  ∈  𝑉 ) | 
						
							| 281 |  | xmetcl | ⊢ ( ( 𝐸  ∈  ( ∞Met ‘ 𝑉 )  ∧  𝑋  ∈  𝑉  ∧  ( 2nd  ‘ ( 𝑔 ‘ 1 ) )  ∈  𝑉 )  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 1 ) ) )  ∈  ℝ* ) | 
						
							| 282 | 272 273 280 281 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 1 ) ) )  ∈  ℝ* ) | 
						
							| 283 | 282 | xrleidd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 1 ) ) )  ≤  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 1 ) ) ) ) | 
						
							| 284 | 137 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  𝑊  ∈  Mnd ) | 
						
							| 285 | 84 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  1  ∈  ℕ ) | 
						
							| 286 | 44 278 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( 𝐸 ‘ ( 𝑔 ‘ 1 ) )  ∈  ( ℝ*  ∖  { -∞ } ) ) | 
						
							| 287 |  | 2fveq3 | ⊢ ( 𝑗  =  1  →  ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) )  =  ( 𝐸 ‘ ( 𝑔 ‘ 1 ) ) ) | 
						
							| 288 | 64 287 | gsumsn | ⊢ ( ( 𝑊  ∈  Mnd  ∧  1  ∈  ℕ  ∧  ( 𝐸 ‘ ( 𝑔 ‘ 1 ) )  ∈  ( ℝ*  ∖  { -∞ } ) )  →  ( 𝑊  Σg  ( 𝑗  ∈  { 1 }  ↦  ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) )  =  ( 𝐸 ‘ ( 𝑔 ‘ 1 ) ) ) | 
						
							| 289 | 284 285 286 288 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( 𝑊  Σg  ( 𝑗  ∈  { 1 }  ↦  ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) )  =  ( 𝐸 ‘ ( 𝑔 ‘ 1 ) ) ) | 
						
							| 290 | 272 30 | syl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  𝐸 : ( 𝑉  ×  𝑉 ) ⟶ ℝ* ) | 
						
							| 291 |  | fcompt | ⊢ ( ( 𝐸 : ( 𝑉  ×  𝑉 ) ⟶ ℝ*  ∧  𝑔 : ( 1 ... 𝑛 ) ⟶ ( 𝑉  ×  𝑉 ) )  →  ( 𝐸  ∘  𝑔 )  =  ( 𝑗  ∈  ( 1 ... 𝑛 )  ↦  ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) | 
						
							| 292 | 290 49 291 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( 𝐸  ∘  𝑔 )  =  ( 𝑗  ∈  ( 1 ... 𝑛 )  ↦  ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) | 
						
							| 293 | 292 | reseq1d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( ( 𝐸  ∘  𝑔 )  ↾  { 1 } )  =  ( ( 𝑗  ∈  ( 1 ... 𝑛 )  ↦  ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) )  ↾  { 1 } ) ) | 
						
							| 294 | 277 | snssd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  { 1 }  ⊆  ( 1 ... 𝑛 ) ) | 
						
							| 295 | 294 | resmptd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( ( 𝑗  ∈  ( 1 ... 𝑛 )  ↦  ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) )  ↾  { 1 } )  =  ( 𝑗  ∈  { 1 }  ↦  ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) | 
						
							| 296 | 293 295 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( ( 𝐸  ∘  𝑔 )  ↾  { 1 } )  =  ( 𝑗  ∈  { 1 }  ↦  ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) | 
						
							| 297 | 296 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  { 1 } ) )  =  ( 𝑊  Σg  ( 𝑗  ∈  { 1 }  ↦  ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) ) | 
						
							| 298 |  | df-ov | ⊢ ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐸 ‘ 〈 𝑋 ,  ( 2nd  ‘ ( 𝑔 ‘ 1 ) ) 〉 ) | 
						
							| 299 |  | 1st2nd2 | ⊢ ( ( 𝑔 ‘ 1 )  ∈  ( 𝑉  ×  𝑉 )  →  ( 𝑔 ‘ 1 )  =  〈 ( 1st  ‘ ( 𝑔 ‘ 1 ) ) ,  ( 2nd  ‘ ( 𝑔 ‘ 1 ) ) 〉 ) | 
						
							| 300 | 278 299 | syl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( 𝑔 ‘ 1 )  =  〈 ( 1st  ‘ ( 𝑔 ‘ 1 ) ) ,  ( 2nd  ‘ ( 𝑔 ‘ 1 ) ) 〉 ) | 
						
							| 301 | 219 | simp1d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 302 |  | xp1st | ⊢ ( ( 𝑔 ‘ 1 )  ∈  ( 𝑉  ×  𝑉 )  →  ( 1st  ‘ ( 𝑔 ‘ 1 ) )  ∈  𝑉 ) | 
						
							| 303 | 278 302 | syl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( 1st  ‘ ( 𝑔 ‘ 1 ) )  ∈  𝑉 ) | 
						
							| 304 |  | f1fveq | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝐵  ∧  ( ( 1st  ‘ ( 𝑔 ‘ 1 ) )  ∈  𝑉  ∧  𝑋  ∈  𝑉 ) )  →  ( ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑋 )  ↔  ( 1st  ‘ ( 𝑔 ‘ 1 ) )  =  𝑋 ) ) | 
						
							| 305 | 223 303 273 304 | syl12anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐹 ‘ 𝑋 )  ↔  ( 1st  ‘ ( 𝑔 ‘ 1 ) )  =  𝑋 ) ) | 
						
							| 306 | 301 305 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( 1st  ‘ ( 𝑔 ‘ 1 ) )  =  𝑋 ) | 
						
							| 307 | 306 | opeq1d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  〈 ( 1st  ‘ ( 𝑔 ‘ 1 ) ) ,  ( 2nd  ‘ ( 𝑔 ‘ 1 ) ) 〉  =  〈 𝑋 ,  ( 2nd  ‘ ( 𝑔 ‘ 1 ) ) 〉 ) | 
						
							| 308 | 300 307 | eqtr2d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  〈 𝑋 ,  ( 2nd  ‘ ( 𝑔 ‘ 1 ) ) 〉  =  ( 𝑔 ‘ 1 ) ) | 
						
							| 309 | 308 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( 𝐸 ‘ 〈 𝑋 ,  ( 2nd  ‘ ( 𝑔 ‘ 1 ) ) 〉 )  =  ( 𝐸 ‘ ( 𝑔 ‘ 1 ) ) ) | 
						
							| 310 | 298 309 | eqtrid | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 1 ) ) )  =  ( 𝐸 ‘ ( 𝑔 ‘ 1 ) ) ) | 
						
							| 311 | 289 297 310 | 3eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  { 1 } ) )  =  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 1 ) ) ) ) | 
						
							| 312 | 283 311 | breqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 1 ) ) )  ≤  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  { 1 } ) ) ) | 
						
							| 313 | 312 | a1d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( 1  ∈  ( 1 ... 𝑛 )  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 1 ) ) )  ≤  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  { 1 } ) ) ) ) | 
						
							| 314 |  | simprl | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  𝑥  ∈  ℕ ) | 
						
							| 315 | 314 274 | eleqtrdi | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  𝑥  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 316 |  | simprr | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) | 
						
							| 317 |  | peano2fzr | ⊢ ( ( 𝑥  ∈  ( ℤ≥ ‘ 1 )  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) )  →  𝑥  ∈  ( 1 ... 𝑛 ) ) | 
						
							| 318 | 315 316 317 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  𝑥  ∈  ( 1 ... 𝑛 ) ) | 
						
							| 319 | 318 | expr | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  𝑥  ∈  ℕ )  →  ( ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 )  →  𝑥  ∈  ( 1 ... 𝑛 ) ) ) | 
						
							| 320 | 319 | imim1d | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  𝑥  ∈  ℕ )  →  ( ( 𝑥  ∈  ( 1 ... 𝑛 )  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) )  ≤  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑥 ) ) ) )  →  ( ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 )  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) )  ≤  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑥 ) ) ) ) ) ) | 
						
							| 321 | 272 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  𝐸  ∈  ( ∞Met ‘ 𝑉 ) ) | 
						
							| 322 | 273 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  𝑋  ∈  𝑉 ) | 
						
							| 323 | 49 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  𝑔 : ( 1 ... 𝑛 ) ⟶ ( 𝑉  ×  𝑉 ) ) | 
						
							| 324 | 323 318 | ffvelcdmd | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( 𝑔 ‘ 𝑥 )  ∈  ( 𝑉  ×  𝑉 ) ) | 
						
							| 325 |  | xp2nd | ⊢ ( ( 𝑔 ‘ 𝑥 )  ∈  ( 𝑉  ×  𝑉 )  →  ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) )  ∈  𝑉 ) | 
						
							| 326 | 324 325 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) )  ∈  𝑉 ) | 
						
							| 327 |  | xmetcl | ⊢ ( ( 𝐸  ∈  ( ∞Met ‘ 𝑉 )  ∧  𝑋  ∈  𝑉  ∧  ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) )  ∈  𝑉 )  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) )  ∈  ℝ* ) | 
						
							| 328 | 321 322 326 327 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) )  ∈  ℝ* ) | 
						
							| 329 | 66 | a1i | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  𝑊  ∈  CMnd ) | 
						
							| 330 |  | fzfid | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( 1 ... 𝑥 )  ∈  Fin ) | 
						
							| 331 | 51 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( 𝐸  ∘  𝑔 ) : ( 1 ... 𝑛 ) ⟶ ( ℝ*  ∖  { -∞ } ) ) | 
						
							| 332 |  | fzsuc | ⊢ ( 𝑥  ∈  ( ℤ≥ ‘ 1 )  →  ( 1 ... ( 𝑥  +  1 ) )  =  ( ( 1 ... 𝑥 )  ∪  { ( 𝑥  +  1 ) } ) ) | 
						
							| 333 | 315 332 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( 1 ... ( 𝑥  +  1 ) )  =  ( ( 1 ... 𝑥 )  ∪  { ( 𝑥  +  1 ) } ) ) | 
						
							| 334 |  | elfzuz3 | ⊢ ( ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 )  →  𝑛  ∈  ( ℤ≥ ‘ ( 𝑥  +  1 ) ) ) | 
						
							| 335 | 334 | ad2antll | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  𝑛  ∈  ( ℤ≥ ‘ ( 𝑥  +  1 ) ) ) | 
						
							| 336 |  | fzss2 | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑥  +  1 ) )  →  ( 1 ... ( 𝑥  +  1 ) )  ⊆  ( 1 ... 𝑛 ) ) | 
						
							| 337 | 335 336 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( 1 ... ( 𝑥  +  1 ) )  ⊆  ( 1 ... 𝑛 ) ) | 
						
							| 338 | 333 337 | eqsstrrd | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( ( 1 ... 𝑥 )  ∪  { ( 𝑥  +  1 ) } )  ⊆  ( 1 ... 𝑛 ) ) | 
						
							| 339 | 338 | unssad | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( 1 ... 𝑥 )  ⊆  ( 1 ... 𝑛 ) ) | 
						
							| 340 | 331 339 | fssresd | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑥 ) ) : ( 1 ... 𝑥 ) ⟶ ( ℝ*  ∖  { -∞ } ) ) | 
						
							| 341 | 68 | a1i | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  0  ∈  V ) | 
						
							| 342 | 340 330 341 | fdmfifsupp | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑥 ) )  finSupp  0 ) | 
						
							| 343 | 64 65 329 330 340 342 | gsumcl | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑥 ) ) )  ∈  ( ℝ*  ∖  { -∞ } ) ) | 
						
							| 344 | 343 | eldifad | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑥 ) ) )  ∈  ℝ* ) | 
						
							| 345 | 321 30 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  𝐸 : ( 𝑉  ×  𝑉 ) ⟶ ℝ* ) | 
						
							| 346 | 323 316 | ffvelcdmd | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( 𝑔 ‘ ( 𝑥  +  1 ) )  ∈  ( 𝑉  ×  𝑉 ) ) | 
						
							| 347 | 345 346 | ffvelcdmd | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) )  ∈  ℝ* ) | 
						
							| 348 |  | xleadd1a | ⊢ ( ( ( ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) )  ∈  ℝ*  ∧  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑥 ) ) )  ∈  ℝ*  ∧  ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) )  ∈  ℝ* )  ∧  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) )  ≤  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑥 ) ) ) )  →  ( ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) )  +𝑒  ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) )  ≤  ( ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑥 ) ) )  +𝑒  ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) ) ) | 
						
							| 349 | 348 | ex | ⊢ ( ( ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) )  ∈  ℝ*  ∧  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑥 ) ) )  ∈  ℝ*  ∧  ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) )  ∈  ℝ* )  →  ( ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) )  ≤  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑥 ) ) )  →  ( ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) )  +𝑒  ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) )  ≤  ( ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑥 ) ) )  +𝑒  ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) ) ) ) | 
						
							| 350 | 328 344 347 349 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) )  ≤  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑥 ) ) )  →  ( ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) )  +𝑒  ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) )  ≤  ( ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑥 ) ) )  +𝑒  ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) ) ) ) | 
						
							| 351 |  | xp2nd | ⊢ ( ( 𝑔 ‘ ( 𝑥  +  1 ) )  ∈  ( 𝑉  ×  𝑉 )  →  ( 2nd  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) )  ∈  𝑉 ) | 
						
							| 352 | 346 351 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( 2nd  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) )  ∈  𝑉 ) | 
						
							| 353 |  | xmettri | ⊢ ( ( 𝐸  ∈  ( ∞Met ‘ 𝑉 )  ∧  ( 𝑋  ∈  𝑉  ∧  ( 2nd  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) )  ∈  𝑉  ∧  ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) )  ∈  𝑉 ) )  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) )  ≤  ( ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) )  +𝑒  ( ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) 𝐸 ( 2nd  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) ) ) ) | 
						
							| 354 | 321 322 352 326 353 | syl13anc | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) )  ≤  ( ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) )  +𝑒  ( ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) 𝐸 ( 2nd  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) ) ) ) | 
						
							| 355 |  | 1st2nd2 | ⊢ ( ( 𝑔 ‘ ( 𝑥  +  1 ) )  ∈  ( 𝑉  ×  𝑉 )  →  ( 𝑔 ‘ ( 𝑥  +  1 ) )  =  〈 ( 1st  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) ,  ( 2nd  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) 〉 ) | 
						
							| 356 | 346 355 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( 𝑔 ‘ ( 𝑥  +  1 ) )  =  〈 ( 1st  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) ,  ( 2nd  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) 〉 ) | 
						
							| 357 |  | 2fveq3 | ⊢ ( 𝑖  =  𝑥  →  ( 2nd  ‘ ( 𝑔 ‘ 𝑖 ) )  =  ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) ) | 
						
							| 358 | 357 | fveq2d | ⊢ ( 𝑖  =  𝑥  →  ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑖 ) ) )  =  ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) ) ) | 
						
							| 359 |  | fvoveq1 | ⊢ ( 𝑖  =  𝑥  →  ( 𝑔 ‘ ( 𝑖  +  1 ) )  =  ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) | 
						
							| 360 | 359 | fveq2d | ⊢ ( 𝑖  =  𝑥  →  ( 1st  ‘ ( 𝑔 ‘ ( 𝑖  +  1 ) ) )  =  ( 1st  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) ) | 
						
							| 361 | 360 | fveq2d | ⊢ ( 𝑖  =  𝑥  →  ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ ( 𝑖  +  1 ) ) ) )  =  ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) ) ) | 
						
							| 362 | 358 361 | eqeq12d | ⊢ ( 𝑖  =  𝑥  →  ( ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑖 ) ) )  =  ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ ( 𝑖  +  1 ) ) ) )  ↔  ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) )  =  ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) ) ) ) | 
						
							| 363 | 219 | simp3d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ∀ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑖 ) ) )  =  ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 364 | 363 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ∀ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑖 ) ) )  =  ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 365 |  | nnz | ⊢ ( 𝑥  ∈  ℕ  →  𝑥  ∈  ℤ ) | 
						
							| 366 | 365 | ad2antrl | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  𝑥  ∈  ℤ ) | 
						
							| 367 |  | eluzp1m1 | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑛  ∈  ( ℤ≥ ‘ ( 𝑥  +  1 ) ) )  →  ( 𝑛  −  1 )  ∈  ( ℤ≥ ‘ 𝑥 ) ) | 
						
							| 368 | 366 335 367 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( 𝑛  −  1 )  ∈  ( ℤ≥ ‘ 𝑥 ) ) | 
						
							| 369 |  | elfzuzb | ⊢ ( 𝑥  ∈  ( 1 ... ( 𝑛  −  1 ) )  ↔  ( 𝑥  ∈  ( ℤ≥ ‘ 1 )  ∧  ( 𝑛  −  1 )  ∈  ( ℤ≥ ‘ 𝑥 ) ) ) | 
						
							| 370 | 315 368 369 | sylanbrc | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  𝑥  ∈  ( 1 ... ( 𝑛  −  1 ) ) ) | 
						
							| 371 | 362 364 370 | rspcdva | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) )  =  ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) ) ) | 
						
							| 372 | 223 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  𝐹 : 𝑉 –1-1→ 𝐵 ) | 
						
							| 373 |  | xp1st | ⊢ ( ( 𝑔 ‘ ( 𝑥  +  1 ) )  ∈  ( 𝑉  ×  𝑉 )  →  ( 1st  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) )  ∈  𝑉 ) | 
						
							| 374 | 346 373 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( 1st  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) )  ∈  𝑉 ) | 
						
							| 375 |  | f1fveq | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝐵  ∧  ( ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) )  ∈  𝑉  ∧  ( 1st  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) )  ∈  𝑉 ) )  →  ( ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) )  =  ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) )  ↔  ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) )  =  ( 1st  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) ) ) | 
						
							| 376 | 372 326 374 375 | syl12anc | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( ( 𝐹 ‘ ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) )  =  ( 𝐹 ‘ ( 1st  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) )  ↔  ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) )  =  ( 1st  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) ) ) | 
						
							| 377 | 371 376 | mpbid | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) )  =  ( 1st  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) ) | 
						
							| 378 | 377 | opeq1d | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  〈 ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) ,  ( 2nd  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) 〉  =  〈 ( 1st  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) ,  ( 2nd  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) 〉 ) | 
						
							| 379 | 356 378 | eqtr4d | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( 𝑔 ‘ ( 𝑥  +  1 ) )  =  〈 ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) ,  ( 2nd  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) 〉 ) | 
						
							| 380 | 379 | fveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) )  =  ( 𝐸 ‘ 〈 ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) ,  ( 2nd  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) 〉 ) ) | 
						
							| 381 |  | df-ov | ⊢ ( ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) 𝐸 ( 2nd  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) )  =  ( 𝐸 ‘ 〈 ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) ,  ( 2nd  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) 〉 ) | 
						
							| 382 | 380 381 | eqtr4di | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) )  =  ( ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) 𝐸 ( 2nd  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) ) ) | 
						
							| 383 | 382 | oveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) )  +𝑒  ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) )  =  ( ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) )  +𝑒  ( ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) 𝐸 ( 2nd  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) ) ) ) | 
						
							| 384 | 354 383 | breqtrrd | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) )  ≤  ( ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) )  +𝑒  ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) ) ) | 
						
							| 385 |  | xmetcl | ⊢ ( ( 𝐸  ∈  ( ∞Met ‘ 𝑉 )  ∧  𝑋  ∈  𝑉  ∧  ( 2nd  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) )  ∈  𝑉 )  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) )  ∈  ℝ* ) | 
						
							| 386 | 321 322 352 385 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) )  ∈  ℝ* ) | 
						
							| 387 | 328 347 | xaddcld | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) )  +𝑒  ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) )  ∈  ℝ* ) | 
						
							| 388 | 344 347 | xaddcld | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑥 ) ) )  +𝑒  ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) )  ∈  ℝ* ) | 
						
							| 389 |  | xrletr | ⊢ ( ( ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) )  ∈  ℝ*  ∧  ( ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) )  +𝑒  ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) )  ∈  ℝ*  ∧  ( ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑥 ) ) )  +𝑒  ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) )  ∈  ℝ* )  →  ( ( ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) )  ≤  ( ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) )  +𝑒  ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) )  ∧  ( ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) )  +𝑒  ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) )  ≤  ( ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑥 ) ) )  +𝑒  ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) ) )  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) )  ≤  ( ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑥 ) ) )  +𝑒  ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) ) ) ) | 
						
							| 390 | 386 387 388 389 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( ( ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) )  ≤  ( ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) )  +𝑒  ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) )  ∧  ( ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) )  +𝑒  ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) )  ≤  ( ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑥 ) ) )  +𝑒  ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) ) )  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) )  ≤  ( ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑥 ) ) )  +𝑒  ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) ) ) ) | 
						
							| 391 | 384 390 | mpand | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( ( ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) )  +𝑒  ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) )  ≤  ( ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑥 ) ) )  +𝑒  ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) )  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) )  ≤  ( ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑥 ) ) )  +𝑒  ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) ) ) ) | 
						
							| 392 | 350 391 | syld | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) )  ≤  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑥 ) ) )  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) )  ≤  ( ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑥 ) ) )  +𝑒  ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) ) ) ) | 
						
							| 393 |  | xrex | ⊢ ℝ*  ∈  V | 
						
							| 394 | 393 | difexi | ⊢ ( ℝ*  ∖  { -∞ } )  ∈  V | 
						
							| 395 | 10 24 | ressplusg | ⊢ ( ( ℝ*  ∖  { -∞ } )  ∈  V  →   +𝑒   =  ( +g ‘ 𝑊 ) ) | 
						
							| 396 | 394 395 | ax-mp | ⊢  +𝑒   =  ( +g ‘ 𝑊 ) | 
						
							| 397 | 44 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  ∧  𝑗  ∈  ( 1 ... 𝑥 ) )  →  𝐸 : ( 𝑉  ×  𝑉 ) ⟶ ( ℝ*  ∖  { -∞ } ) ) | 
						
							| 398 |  | fzelp1 | ⊢ ( 𝑗  ∈  ( 1 ... 𝑥 )  →  𝑗  ∈  ( 1 ... ( 𝑥  +  1 ) ) ) | 
						
							| 399 | 49 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  ∧  𝑗  ∈  ( 1 ... ( 𝑥  +  1 ) ) )  →  𝑔 : ( 1 ... 𝑛 ) ⟶ ( 𝑉  ×  𝑉 ) ) | 
						
							| 400 | 337 | sselda | ⊢ ( ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  ∧  𝑗  ∈  ( 1 ... ( 𝑥  +  1 ) ) )  →  𝑗  ∈  ( 1 ... 𝑛 ) ) | 
						
							| 401 | 399 400 | ffvelcdmd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  ∧  𝑗  ∈  ( 1 ... ( 𝑥  +  1 ) ) )  →  ( 𝑔 ‘ 𝑗 )  ∈  ( 𝑉  ×  𝑉 ) ) | 
						
							| 402 | 398 401 | sylan2 | ⊢ ( ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  ∧  𝑗  ∈  ( 1 ... 𝑥 ) )  →  ( 𝑔 ‘ 𝑗 )  ∈  ( 𝑉  ×  𝑉 ) ) | 
						
							| 403 | 397 402 | ffvelcdmd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  ∧  𝑗  ∈  ( 1 ... 𝑥 ) )  →  ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) )  ∈  ( ℝ*  ∖  { -∞ } ) ) | 
						
							| 404 |  | fzp1disj | ⊢ ( ( 1 ... 𝑥 )  ∩  { ( 𝑥  +  1 ) } )  =  ∅ | 
						
							| 405 | 404 | a1i | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( ( 1 ... 𝑥 )  ∩  { ( 𝑥  +  1 ) } )  =  ∅ ) | 
						
							| 406 |  | disjsn | ⊢ ( ( ( 1 ... 𝑥 )  ∩  { ( 𝑥  +  1 ) } )  =  ∅  ↔  ¬  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑥 ) ) | 
						
							| 407 | 405 406 | sylib | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ¬  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑥 ) ) | 
						
							| 408 | 44 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  𝐸 : ( 𝑉  ×  𝑉 ) ⟶ ( ℝ*  ∖  { -∞ } ) ) | 
						
							| 409 | 408 346 | ffvelcdmd | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) )  ∈  ( ℝ*  ∖  { -∞ } ) ) | 
						
							| 410 |  | 2fveq3 | ⊢ ( 𝑗  =  ( 𝑥  +  1 )  →  ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) )  =  ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) ) | 
						
							| 411 | 64 396 329 330 403 316 407 409 410 | gsumunsn | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( 𝑊  Σg  ( 𝑗  ∈  ( ( 1 ... 𝑥 )  ∪  { ( 𝑥  +  1 ) } )  ↦  ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) )  =  ( ( 𝑊  Σg  ( 𝑗  ∈  ( 1 ... 𝑥 )  ↦  ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) )  +𝑒  ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) ) ) | 
						
							| 412 | 292 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( 𝐸  ∘  𝑔 )  =  ( 𝑗  ∈  ( 1 ... 𝑛 )  ↦  ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) | 
						
							| 413 | 412 333 | reseq12d | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... ( 𝑥  +  1 ) ) )  =  ( ( 𝑗  ∈  ( 1 ... 𝑛 )  ↦  ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) )  ↾  ( ( 1 ... 𝑥 )  ∪  { ( 𝑥  +  1 ) } ) ) ) | 
						
							| 414 | 338 | resmptd | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( ( 𝑗  ∈  ( 1 ... 𝑛 )  ↦  ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) )  ↾  ( ( 1 ... 𝑥 )  ∪  { ( 𝑥  +  1 ) } ) )  =  ( 𝑗  ∈  ( ( 1 ... 𝑥 )  ∪  { ( 𝑥  +  1 ) } )  ↦  ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) | 
						
							| 415 | 413 414 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... ( 𝑥  +  1 ) ) )  =  ( 𝑗  ∈  ( ( 1 ... 𝑥 )  ∪  { ( 𝑥  +  1 ) } )  ↦  ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) | 
						
							| 416 | 415 | oveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... ( 𝑥  +  1 ) ) ) )  =  ( 𝑊  Σg  ( 𝑗  ∈  ( ( 1 ... 𝑥 )  ∪  { ( 𝑥  +  1 ) } )  ↦  ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) ) | 
						
							| 417 | 412 | reseq1d | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑥 ) )  =  ( ( 𝑗  ∈  ( 1 ... 𝑛 )  ↦  ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) )  ↾  ( 1 ... 𝑥 ) ) ) | 
						
							| 418 | 339 | resmptd | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( ( 𝑗  ∈  ( 1 ... 𝑛 )  ↦  ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) )  ↾  ( 1 ... 𝑥 ) )  =  ( 𝑗  ∈  ( 1 ... 𝑥 )  ↦  ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) | 
						
							| 419 | 417 418 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑥 ) )  =  ( 𝑗  ∈  ( 1 ... 𝑥 )  ↦  ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) | 
						
							| 420 | 419 | oveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑥 ) ) )  =  ( 𝑊  Σg  ( 𝑗  ∈  ( 1 ... 𝑥 )  ↦  ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) ) ) | 
						
							| 421 | 420 | oveq1d | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑥 ) ) )  +𝑒  ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) )  =  ( ( 𝑊  Σg  ( 𝑗  ∈  ( 1 ... 𝑥 )  ↦  ( 𝐸 ‘ ( 𝑔 ‘ 𝑗 ) ) ) )  +𝑒  ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) ) ) | 
						
							| 422 | 411 416 421 | 3eqtr4d | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... ( 𝑥  +  1 ) ) ) )  =  ( ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑥 ) ) )  +𝑒  ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) ) ) | 
						
							| 423 | 422 | breq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) )  ≤  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... ( 𝑥  +  1 ) ) ) )  ↔  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) )  ≤  ( ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑥 ) ) )  +𝑒  ( 𝐸 ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) ) ) ) | 
						
							| 424 | 392 423 | sylibrd | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  ∧  ( 𝑥  ∈  ℕ  ∧  ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 ) ) )  →  ( ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) )  ≤  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑥 ) ) )  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) )  ≤  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... ( 𝑥  +  1 ) ) ) ) ) ) | 
						
							| 425 | 320 424 | animpimp2impd | ⊢ ( 𝑥  ∈  ℕ  →  ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( 𝑥  ∈  ( 1 ... 𝑛 )  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑥 ) ) )  ≤  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑥 ) ) ) ) )  →  ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( ( 𝑥  +  1 )  ∈  ( 1 ... 𝑛 )  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ ( 𝑥  +  1 ) ) ) )  ≤  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... ( 𝑥  +  1 ) ) ) ) ) ) ) ) | 
						
							| 426 | 244 253 262 271 313 425 | nnind | ⊢ ( 𝑛  ∈  ℕ  →  ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( 𝑛  ∈  ( 1 ... 𝑛 )  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) ) )  ≤  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑛 ) ) ) ) ) ) | 
						
							| 427 | 224 426 | mpcom | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( 𝑛  ∈  ( 1 ... 𝑛 )  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) ) )  ≤  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑛 ) ) ) ) ) | 
						
							| 428 | 226 427 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( 𝑋 𝐸 ( 2nd  ‘ ( 𝑔 ‘ 𝑛 ) ) )  ≤  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑛 ) ) ) ) | 
						
							| 429 | 234 428 | eqbrtrrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( 𝑋 𝐸 𝑌 )  ≤  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑛 ) ) ) ) | 
						
							| 430 |  | ffn | ⊢ ( ( 𝐸  ∘  𝑔 ) : ( 1 ... 𝑛 ) ⟶ ( ℝ*  ∖  { -∞ } )  →  ( 𝐸  ∘  𝑔 )  Fn  ( 1 ... 𝑛 ) ) | 
						
							| 431 |  | fnresdm | ⊢ ( ( 𝐸  ∘  𝑔 )  Fn  ( 1 ... 𝑛 )  →  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑛 ) )  =  ( 𝐸  ∘  𝑔 ) ) | 
						
							| 432 | 51 430 431 | 3syl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑛 ) )  =  ( 𝐸  ∘  𝑔 ) ) | 
						
							| 433 | 432 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑛 ) ) )  =  ( 𝑊  Σg  ( 𝐸  ∘  𝑔 ) ) ) | 
						
							| 434 | 62 433 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) )  =  ( 𝑊  Σg  ( ( 𝐸  ∘  𝑔 )  ↾  ( 1 ... 𝑛 ) ) ) ) | 
						
							| 435 | 429 434 | breqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( 𝑋 𝐸 𝑌 )  ≤  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) ) | 
						
							| 436 |  | breq2 | ⊢ ( 𝑝  =  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) )  →  ( ( 𝑋 𝐸 𝑌 )  ≤  𝑝  ↔  ( 𝑋 𝐸 𝑌 )  ≤  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) ) ) | 
						
							| 437 | 435 436 | syl5ibrcom | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑔  ∈  𝑆 )  →  ( 𝑝  =  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) )  →  ( 𝑋 𝐸 𝑌 )  ≤  𝑝 ) ) | 
						
							| 438 | 437 | rexlimdva | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ∃ 𝑔  ∈  𝑆 𝑝  =  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) )  →  ( 𝑋 𝐸 𝑌 )  ≤  𝑝 ) ) | 
						
							| 439 | 216 438 | biimtrid | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑝  ∈  ran  ( 𝑔  ∈  𝑆  ↦  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) )  →  ( 𝑋 𝐸 𝑌 )  ≤  𝑝 ) ) | 
						
							| 440 | 439 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑛  ∈  ℕ 𝑝  ∈  ran  ( 𝑔  ∈  𝑆  ↦  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) )  →  ( 𝑋 𝐸 𝑌 )  ≤  𝑝 ) ) | 
						
							| 441 | 214 440 | biimtrid | ⊢ ( 𝜑  →  ( 𝑝  ∈  𝑇  →  ( 𝑋 𝐸 𝑌 )  ≤  𝑝 ) ) | 
						
							| 442 | 441 | ralrimiv | ⊢ ( 𝜑  →  ∀ 𝑝  ∈  𝑇 ( 𝑋 𝐸 𝑌 )  ≤  𝑝 ) | 
						
							| 443 |  | infxrgelb | ⊢ ( ( 𝑇  ⊆  ℝ*  ∧  ( 𝑋 𝐸 𝑌 )  ∈  ℝ* )  →  ( ( 𝑋 𝐸 𝑌 )  ≤  inf ( 𝑇 ,  ℝ* ,   <  )  ↔  ∀ 𝑝  ∈  𝑇 ( 𝑋 𝐸 𝑌 )  ≤  𝑝 ) ) | 
						
							| 444 | 79 83 443 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑋 𝐸 𝑌 )  ≤  inf ( 𝑇 ,  ℝ* ,   <  )  ↔  ∀ 𝑝  ∈  𝑇 ( 𝑋 𝐸 𝑌 )  ≤  𝑝 ) ) | 
						
							| 445 | 442 444 | mpbird | ⊢ ( 𝜑  →  ( 𝑋 𝐸 𝑌 )  ≤  inf ( 𝑇 ,  ℝ* ,   <  ) ) | 
						
							| 446 | 81 83 211 445 | xrletrid | ⊢ ( 𝜑  →  inf ( 𝑇 ,  ℝ* ,   <  )  =  ( 𝑋 𝐸 𝑌 ) ) | 
						
							| 447 | 22 446 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝑋 ) 𝐷 ( 𝐹 ‘ 𝑌 ) )  =  ( 𝑋 𝐸 𝑌 ) ) |