| Step | Hyp | Ref | Expression | 
						
							| 1 |  | imasbas.u | ⊢ ( 𝜑  →  𝑈  =  ( 𝐹  “s  𝑅 ) ) | 
						
							| 2 |  | imasbas.v | ⊢ ( 𝜑  →  𝑉  =  ( Base ‘ 𝑅 ) ) | 
						
							| 3 |  | imasbas.f | ⊢ ( 𝜑  →  𝐹 : 𝑉 –onto→ 𝐵 ) | 
						
							| 4 |  | imasbas.r | ⊢ ( 𝜑  →  𝑅  ∈  𝑍 ) | 
						
							| 5 |  | imasds.e | ⊢ 𝐸  =  ( dist ‘ 𝑅 ) | 
						
							| 6 |  | imasds.d | ⊢ 𝐷  =  ( dist ‘ 𝑈 ) | 
						
							| 7 |  | imasdsval.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 8 |  | imasdsval.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 9 |  | imasdsval.s | ⊢ 𝑆  =  { ℎ  ∈  ( ( 𝑉  ×  𝑉 )  ↑m  ( 1 ... 𝑛 ) )  ∣  ( ( 𝐹 ‘ ( 1st  ‘ ( ℎ ‘ 1 ) ) )  =  𝑋  ∧  ( 𝐹 ‘ ( 2nd  ‘ ( ℎ ‘ 𝑛 ) ) )  =  𝑌  ∧  ∀ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 𝐹 ‘ ( 2nd  ‘ ( ℎ ‘ 𝑖 ) ) )  =  ( 𝐹 ‘ ( 1st  ‘ ( ℎ ‘ ( 𝑖  +  1 ) ) ) ) ) } | 
						
							| 10 |  | imasds.u | ⊢ 𝑇  =  ( 𝐸  ↾  ( 𝑉  ×  𝑉 ) ) | 
						
							| 11 | 1 2 3 4 5 6 7 8 9 | imasdsval | ⊢ ( 𝜑  →  ( 𝑋 𝐷 𝑌 )  =  inf ( ∪  𝑛  ∈  ℕ ran  ( 𝑔  ∈  𝑆  ↦  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) ) ,  ℝ* ,   <  ) ) | 
						
							| 12 | 10 | coeq1i | ⊢ ( 𝑇  ∘  𝑔 )  =  ( ( 𝐸  ↾  ( 𝑉  ×  𝑉 ) )  ∘  𝑔 ) | 
						
							| 13 | 9 | ssrab3 | ⊢ 𝑆  ⊆  ( ( 𝑉  ×  𝑉 )  ↑m  ( 1 ... 𝑛 ) ) | 
						
							| 14 | 13 | sseli | ⊢ ( 𝑔  ∈  𝑆  →  𝑔  ∈  ( ( 𝑉  ×  𝑉 )  ↑m  ( 1 ... 𝑛 ) ) ) | 
						
							| 15 |  | elmapi | ⊢ ( 𝑔  ∈  ( ( 𝑉  ×  𝑉 )  ↑m  ( 1 ... 𝑛 ) )  →  𝑔 : ( 1 ... 𝑛 ) ⟶ ( 𝑉  ×  𝑉 ) ) | 
						
							| 16 |  | frn | ⊢ ( 𝑔 : ( 1 ... 𝑛 ) ⟶ ( 𝑉  ×  𝑉 )  →  ran  𝑔  ⊆  ( 𝑉  ×  𝑉 ) ) | 
						
							| 17 |  | cores | ⊢ ( ran  𝑔  ⊆  ( 𝑉  ×  𝑉 )  →  ( ( 𝐸  ↾  ( 𝑉  ×  𝑉 ) )  ∘  𝑔 )  =  ( 𝐸  ∘  𝑔 ) ) | 
						
							| 18 | 14 15 16 17 | 4syl | ⊢ ( 𝑔  ∈  𝑆  →  ( ( 𝐸  ↾  ( 𝑉  ×  𝑉 ) )  ∘  𝑔 )  =  ( 𝐸  ∘  𝑔 ) ) | 
						
							| 19 | 12 18 | eqtrid | ⊢ ( 𝑔  ∈  𝑆  →  ( 𝑇  ∘  𝑔 )  =  ( 𝐸  ∘  𝑔 ) ) | 
						
							| 20 | 19 | oveq2d | ⊢ ( 𝑔  ∈  𝑆  →  ( ℝ*𝑠  Σg  ( 𝑇  ∘  𝑔 ) )  =  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) ) | 
						
							| 21 | 20 | mpteq2ia | ⊢ ( 𝑔  ∈  𝑆  ↦  ( ℝ*𝑠  Σg  ( 𝑇  ∘  𝑔 ) ) )  =  ( 𝑔  ∈  𝑆  ↦  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) ) | 
						
							| 22 | 21 | rneqi | ⊢ ran  ( 𝑔  ∈  𝑆  ↦  ( ℝ*𝑠  Σg  ( 𝑇  ∘  𝑔 ) ) )  =  ran  ( 𝑔  ∈  𝑆  ↦  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) ) | 
						
							| 23 | 22 | a1i | ⊢ ( 𝑛  ∈  ℕ  →  ran  ( 𝑔  ∈  𝑆  ↦  ( ℝ*𝑠  Σg  ( 𝑇  ∘  𝑔 ) ) )  =  ran  ( 𝑔  ∈  𝑆  ↦  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) ) ) | 
						
							| 24 | 23 | iuneq2i | ⊢ ∪  𝑛  ∈  ℕ ran  ( 𝑔  ∈  𝑆  ↦  ( ℝ*𝑠  Σg  ( 𝑇  ∘  𝑔 ) ) )  =  ∪  𝑛  ∈  ℕ ran  ( 𝑔  ∈  𝑆  ↦  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) ) | 
						
							| 25 | 24 | infeq1i | ⊢ inf ( ∪  𝑛  ∈  ℕ ran  ( 𝑔  ∈  𝑆  ↦  ( ℝ*𝑠  Σg  ( 𝑇  ∘  𝑔 ) ) ) ,  ℝ* ,   <  )  =  inf ( ∪  𝑛  ∈  ℕ ran  ( 𝑔  ∈  𝑆  ↦  ( ℝ*𝑠  Σg  ( 𝐸  ∘  𝑔 ) ) ) ,  ℝ* ,   <  ) | 
						
							| 26 | 11 25 | eqtr4di | ⊢ ( 𝜑  →  ( 𝑋 𝐷 𝑌 )  =  inf ( ∪  𝑛  ∈  ℕ ran  ( 𝑔  ∈  𝑆  ↦  ( ℝ*𝑠  Σg  ( 𝑇  ∘  𝑔 ) ) ) ,  ℝ* ,   <  ) ) |