| Step | Hyp | Ref | Expression | 
						
							| 1 |  | imasf1obl.u | ⊢ ( 𝜑  →  𝑈  =  ( 𝐹  “s  𝑅 ) ) | 
						
							| 2 |  | imasf1obl.v | ⊢ ( 𝜑  →  𝑉  =  ( Base ‘ 𝑅 ) ) | 
						
							| 3 |  | imasf1obl.f | ⊢ ( 𝜑  →  𝐹 : 𝑉 –1-1-onto→ 𝐵 ) | 
						
							| 4 |  | imasf1oms.r | ⊢ ( 𝜑  →  𝑅  ∈  MetSp ) | 
						
							| 5 |  | msxms | ⊢ ( 𝑅  ∈  MetSp  →  𝑅  ∈  ∞MetSp ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝜑  →  𝑅  ∈  ∞MetSp ) | 
						
							| 7 | 1 2 3 6 | imasf1oxms | ⊢ ( 𝜑  →  𝑈  ∈  ∞MetSp ) | 
						
							| 8 |  | eqid | ⊢ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) )  =  ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) | 
						
							| 9 |  | eqid | ⊢ ( dist ‘ 𝑈 )  =  ( dist ‘ 𝑈 ) | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 11 |  | eqid | ⊢ ( ( dist ‘ 𝑅 )  ↾  ( ( Base ‘ 𝑅 )  ×  ( Base ‘ 𝑅 ) ) )  =  ( ( dist ‘ 𝑅 )  ↾  ( ( Base ‘ 𝑅 )  ×  ( Base ‘ 𝑅 ) ) ) | 
						
							| 12 | 10 11 | msmet | ⊢ ( 𝑅  ∈  MetSp  →  ( ( dist ‘ 𝑅 )  ↾  ( ( Base ‘ 𝑅 )  ×  ( Base ‘ 𝑅 ) ) )  ∈  ( Met ‘ ( Base ‘ 𝑅 ) ) ) | 
						
							| 13 | 4 12 | syl | ⊢ ( 𝜑  →  ( ( dist ‘ 𝑅 )  ↾  ( ( Base ‘ 𝑅 )  ×  ( Base ‘ 𝑅 ) ) )  ∈  ( Met ‘ ( Base ‘ 𝑅 ) ) ) | 
						
							| 14 | 2 | sqxpeqd | ⊢ ( 𝜑  →  ( 𝑉  ×  𝑉 )  =  ( ( Base ‘ 𝑅 )  ×  ( Base ‘ 𝑅 ) ) ) | 
						
							| 15 | 14 | reseq2d | ⊢ ( 𝜑  →  ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) )  =  ( ( dist ‘ 𝑅 )  ↾  ( ( Base ‘ 𝑅 )  ×  ( Base ‘ 𝑅 ) ) ) ) | 
						
							| 16 | 2 | fveq2d | ⊢ ( 𝜑  →  ( Met ‘ 𝑉 )  =  ( Met ‘ ( Base ‘ 𝑅 ) ) ) | 
						
							| 17 | 13 15 16 | 3eltr4d | ⊢ ( 𝜑  →  ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) )  ∈  ( Met ‘ 𝑉 ) ) | 
						
							| 18 | 1 2 3 4 8 9 17 | imasf1omet | ⊢ ( 𝜑  →  ( dist ‘ 𝑈 )  ∈  ( Met ‘ 𝐵 ) ) | 
						
							| 19 |  | f1ofo | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝐵  →  𝐹 : 𝑉 –onto→ 𝐵 ) | 
						
							| 20 | 3 19 | syl | ⊢ ( 𝜑  →  𝐹 : 𝑉 –onto→ 𝐵 ) | 
						
							| 21 | 1 2 20 4 | imasbas | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝑈 ) ) | 
						
							| 22 | 21 | fveq2d | ⊢ ( 𝜑  →  ( Met ‘ 𝐵 )  =  ( Met ‘ ( Base ‘ 𝑈 ) ) ) | 
						
							| 23 | 18 22 | eleqtrd | ⊢ ( 𝜑  →  ( dist ‘ 𝑈 )  ∈  ( Met ‘ ( Base ‘ 𝑈 ) ) ) | 
						
							| 24 |  | ssid | ⊢ ( Base ‘ 𝑈 )  ⊆  ( Base ‘ 𝑈 ) | 
						
							| 25 |  | metres2 | ⊢ ( ( ( dist ‘ 𝑈 )  ∈  ( Met ‘ ( Base ‘ 𝑈 ) )  ∧  ( Base ‘ 𝑈 )  ⊆  ( Base ‘ 𝑈 ) )  →  ( ( dist ‘ 𝑈 )  ↾  ( ( Base ‘ 𝑈 )  ×  ( Base ‘ 𝑈 ) ) )  ∈  ( Met ‘ ( Base ‘ 𝑈 ) ) ) | 
						
							| 26 | 23 24 25 | sylancl | ⊢ ( 𝜑  →  ( ( dist ‘ 𝑈 )  ↾  ( ( Base ‘ 𝑈 )  ×  ( Base ‘ 𝑈 ) ) )  ∈  ( Met ‘ ( Base ‘ 𝑈 ) ) ) | 
						
							| 27 |  | eqid | ⊢ ( TopOpen ‘ 𝑈 )  =  ( TopOpen ‘ 𝑈 ) | 
						
							| 28 |  | eqid | ⊢ ( Base ‘ 𝑈 )  =  ( Base ‘ 𝑈 ) | 
						
							| 29 |  | eqid | ⊢ ( ( dist ‘ 𝑈 )  ↾  ( ( Base ‘ 𝑈 )  ×  ( Base ‘ 𝑈 ) ) )  =  ( ( dist ‘ 𝑈 )  ↾  ( ( Base ‘ 𝑈 )  ×  ( Base ‘ 𝑈 ) ) ) | 
						
							| 30 | 27 28 29 | isms | ⊢ ( 𝑈  ∈  MetSp  ↔  ( 𝑈  ∈  ∞MetSp  ∧  ( ( dist ‘ 𝑈 )  ↾  ( ( Base ‘ 𝑈 )  ×  ( Base ‘ 𝑈 ) ) )  ∈  ( Met ‘ ( Base ‘ 𝑈 ) ) ) ) | 
						
							| 31 | 7 26 30 | sylanbrc | ⊢ ( 𝜑  →  𝑈  ∈  MetSp ) |