| Step | Hyp | Ref | Expression | 
						
							| 1 |  | imasf1oxmet.u | ⊢ ( 𝜑  →  𝑈  =  ( 𝐹  “s  𝑅 ) ) | 
						
							| 2 |  | imasf1oxmet.v | ⊢ ( 𝜑  →  𝑉  =  ( Base ‘ 𝑅 ) ) | 
						
							| 3 |  | imasf1oxmet.f | ⊢ ( 𝜑  →  𝐹 : 𝑉 –1-1-onto→ 𝐵 ) | 
						
							| 4 |  | imasf1oxmet.r | ⊢ ( 𝜑  →  𝑅  ∈  𝑍 ) | 
						
							| 5 |  | imasf1oxmet.e | ⊢ 𝐸  =  ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) | 
						
							| 6 |  | imasf1oxmet.d | ⊢ 𝐷  =  ( dist ‘ 𝑈 ) | 
						
							| 7 |  | imasf1oxmet.m | ⊢ ( 𝜑  →  𝐸  ∈  ( ∞Met ‘ 𝑉 ) ) | 
						
							| 8 |  | f1ofo | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝐵  →  𝐹 : 𝑉 –onto→ 𝐵 ) | 
						
							| 9 | 3 8 | syl | ⊢ ( 𝜑  →  𝐹 : 𝑉 –onto→ 𝐵 ) | 
						
							| 10 |  | eqid | ⊢ ( dist ‘ 𝑅 )  =  ( dist ‘ 𝑅 ) | 
						
							| 11 | 1 2 9 4 10 6 | imasdsfn | ⊢ ( 𝜑  →  𝐷  Fn  ( 𝐵  ×  𝐵 ) ) | 
						
							| 12 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  →  𝑈  =  ( 𝐹  “s  𝑅 ) ) | 
						
							| 13 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  →  𝑉  =  ( Base ‘ 𝑅 ) ) | 
						
							| 14 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  →  𝐹 : 𝑉 –1-1-onto→ 𝐵 ) | 
						
							| 15 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  →  𝑅  ∈  𝑍 ) | 
						
							| 16 | 7 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  →  𝐸  ∈  ( ∞Met ‘ 𝑉 ) ) | 
						
							| 17 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  →  𝑎  ∈  𝑉 ) | 
						
							| 18 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  →  𝑏  ∈  𝑉 ) | 
						
							| 19 | 12 13 14 15 5 6 16 17 18 | imasdsf1o | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  →  ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  =  ( 𝑎 𝐸 𝑏 ) ) | 
						
							| 20 |  | xmetcl | ⊢ ( ( 𝐸  ∈  ( ∞Met ‘ 𝑉 )  ∧  𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  →  ( 𝑎 𝐸 𝑏 )  ∈  ℝ* ) | 
						
							| 21 | 20 | 3expb | ⊢ ( ( 𝐸  ∈  ( ∞Met ‘ 𝑉 )  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  →  ( 𝑎 𝐸 𝑏 )  ∈  ℝ* ) | 
						
							| 22 | 7 21 | sylan | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  →  ( 𝑎 𝐸 𝑏 )  ∈  ℝ* ) | 
						
							| 23 | 19 22 | eqeltrd | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  →  ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  ∈  ℝ* ) | 
						
							| 24 | 23 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  𝑉 ∀ 𝑏  ∈  𝑉 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  ∈  ℝ* ) | 
						
							| 25 |  | f1ofn | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝐵  →  𝐹  Fn  𝑉 ) | 
						
							| 26 | 3 25 | syl | ⊢ ( 𝜑  →  𝐹  Fn  𝑉 ) | 
						
							| 27 |  | oveq2 | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑏 )  →  ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  =  ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) | 
						
							| 28 | 27 | eleq1d | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑏 )  →  ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  ∈  ℝ*  ↔  ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  ∈  ℝ* ) ) | 
						
							| 29 | 28 | ralrn | ⊢ ( 𝐹  Fn  𝑉  →  ( ∀ 𝑦  ∈  ran  𝐹 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  ∈  ℝ*  ↔  ∀ 𝑏  ∈  𝑉 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  ∈  ℝ* ) ) | 
						
							| 30 | 26 29 | syl | ⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  ran  𝐹 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  ∈  ℝ*  ↔  ∀ 𝑏  ∈  𝑉 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  ∈  ℝ* ) ) | 
						
							| 31 |  | forn | ⊢ ( 𝐹 : 𝑉 –onto→ 𝐵  →  ran  𝐹  =  𝐵 ) | 
						
							| 32 | 9 31 | syl | ⊢ ( 𝜑  →  ran  𝐹  =  𝐵 ) | 
						
							| 33 | 32 | raleqdv | ⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  ran  𝐹 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  ∈  ℝ*  ↔  ∀ 𝑦  ∈  𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  ∈  ℝ* ) ) | 
						
							| 34 | 30 33 | bitr3d | ⊢ ( 𝜑  →  ( ∀ 𝑏  ∈  𝑉 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  ∈  ℝ*  ↔  ∀ 𝑦  ∈  𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  ∈  ℝ* ) ) | 
						
							| 35 | 34 | ralbidv | ⊢ ( 𝜑  →  ( ∀ 𝑎  ∈  𝑉 ∀ 𝑏  ∈  𝑉 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  ∈  ℝ*  ↔  ∀ 𝑎  ∈  𝑉 ∀ 𝑦  ∈  𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  ∈  ℝ* ) ) | 
						
							| 36 | 24 35 | mpbid | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  𝑉 ∀ 𝑦  ∈  𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  ∈  ℝ* ) | 
						
							| 37 |  | oveq1 | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑎 )  →  ( 𝑥 𝐷 𝑦 )  =  ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ) | 
						
							| 38 | 37 | eleq1d | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑎 )  →  ( ( 𝑥 𝐷 𝑦 )  ∈  ℝ*  ↔  ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  ∈  ℝ* ) ) | 
						
							| 39 | 38 | ralbidv | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑎 )  →  ( ∀ 𝑦  ∈  𝐵 ( 𝑥 𝐷 𝑦 )  ∈  ℝ*  ↔  ∀ 𝑦  ∈  𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  ∈  ℝ* ) ) | 
						
							| 40 | 39 | ralrn | ⊢ ( 𝐹  Fn  𝑉  →  ( ∀ 𝑥  ∈  ran  𝐹 ∀ 𝑦  ∈  𝐵 ( 𝑥 𝐷 𝑦 )  ∈  ℝ*  ↔  ∀ 𝑎  ∈  𝑉 ∀ 𝑦  ∈  𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  ∈  ℝ* ) ) | 
						
							| 41 | 26 40 | syl | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  ran  𝐹 ∀ 𝑦  ∈  𝐵 ( 𝑥 𝐷 𝑦 )  ∈  ℝ*  ↔  ∀ 𝑎  ∈  𝑉 ∀ 𝑦  ∈  𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  ∈  ℝ* ) ) | 
						
							| 42 | 32 | raleqdv | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  ran  𝐹 ∀ 𝑦  ∈  𝐵 ( 𝑥 𝐷 𝑦 )  ∈  ℝ*  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥 𝐷 𝑦 )  ∈  ℝ* ) ) | 
						
							| 43 | 41 42 | bitr3d | ⊢ ( 𝜑  →  ( ∀ 𝑎  ∈  𝑉 ∀ 𝑦  ∈  𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  ∈  ℝ*  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥 𝐷 𝑦 )  ∈  ℝ* ) ) | 
						
							| 44 | 36 43 | mpbid | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥 𝐷 𝑦 )  ∈  ℝ* ) | 
						
							| 45 |  | ffnov | ⊢ ( 𝐷 : ( 𝐵  ×  𝐵 ) ⟶ ℝ*  ↔  ( 𝐷  Fn  ( 𝐵  ×  𝐵 )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥 𝐷 𝑦 )  ∈  ℝ* ) ) | 
						
							| 46 | 11 44 45 | sylanbrc | ⊢ ( 𝜑  →  𝐷 : ( 𝐵  ×  𝐵 ) ⟶ ℝ* ) | 
						
							| 47 |  | xmeteq0 | ⊢ ( ( 𝐸  ∈  ( ∞Met ‘ 𝑉 )  ∧  𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  →  ( ( 𝑎 𝐸 𝑏 )  =  0  ↔  𝑎  =  𝑏 ) ) | 
						
							| 48 | 16 17 18 47 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  →  ( ( 𝑎 𝐸 𝑏 )  =  0  ↔  𝑎  =  𝑏 ) ) | 
						
							| 49 | 19 | eqeq1d | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  →  ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  =  0  ↔  ( 𝑎 𝐸 𝑏 )  =  0 ) ) | 
						
							| 50 |  | f1of1 | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝐵  →  𝐹 : 𝑉 –1-1→ 𝐵 ) | 
						
							| 51 | 3 50 | syl | ⊢ ( 𝜑  →  𝐹 : 𝑉 –1-1→ 𝐵 ) | 
						
							| 52 |  | f1fveq | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝐵  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  →  ( ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑏 )  ↔  𝑎  =  𝑏 ) ) | 
						
							| 53 | 51 52 | sylan | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  →  ( ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑏 )  ↔  𝑎  =  𝑏 ) ) | 
						
							| 54 | 48 49 53 | 3bitr4d | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  →  ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  =  0  ↔  ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑏 ) ) ) | 
						
							| 55 | 16 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  𝑐  ∈  𝑉 )  →  𝐸  ∈  ( ∞Met ‘ 𝑉 ) ) | 
						
							| 56 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  𝑐  ∈  𝑉 )  →  𝑐  ∈  𝑉 ) | 
						
							| 57 | 17 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  𝑐  ∈  𝑉 )  →  𝑎  ∈  𝑉 ) | 
						
							| 58 | 18 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  𝑐  ∈  𝑉 )  →  𝑏  ∈  𝑉 ) | 
						
							| 59 |  | xmettri2 | ⊢ ( ( 𝐸  ∈  ( ∞Met ‘ 𝑉 )  ∧  ( 𝑐  ∈  𝑉  ∧  𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  →  ( 𝑎 𝐸 𝑏 )  ≤  ( ( 𝑐 𝐸 𝑎 )  +𝑒  ( 𝑐 𝐸 𝑏 ) ) ) | 
						
							| 60 | 55 56 57 58 59 | syl13anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  𝑐  ∈  𝑉 )  →  ( 𝑎 𝐸 𝑏 )  ≤  ( ( 𝑐 𝐸 𝑎 )  +𝑒  ( 𝑐 𝐸 𝑏 ) ) ) | 
						
							| 61 | 19 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  𝑐  ∈  𝑉 )  →  ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  =  ( 𝑎 𝐸 𝑏 ) ) | 
						
							| 62 | 12 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  𝑐  ∈  𝑉 )  →  𝑈  =  ( 𝐹  “s  𝑅 ) ) | 
						
							| 63 | 13 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  𝑐  ∈  𝑉 )  →  𝑉  =  ( Base ‘ 𝑅 ) ) | 
						
							| 64 | 14 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  𝑐  ∈  𝑉 )  →  𝐹 : 𝑉 –1-1-onto→ 𝐵 ) | 
						
							| 65 | 15 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  𝑐  ∈  𝑉 )  →  𝑅  ∈  𝑍 ) | 
						
							| 66 | 62 63 64 65 5 6 55 56 57 | imasdsf1o | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  𝑐  ∈  𝑉 )  →  ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑎 ) )  =  ( 𝑐 𝐸 𝑎 ) ) | 
						
							| 67 | 62 63 64 65 5 6 55 56 58 | imasdsf1o | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  𝑐  ∈  𝑉 )  →  ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  =  ( 𝑐 𝐸 𝑏 ) ) | 
						
							| 68 | 66 67 | oveq12d | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  𝑐  ∈  𝑉 )  →  ( ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) )  =  ( ( 𝑐 𝐸 𝑎 )  +𝑒  ( 𝑐 𝐸 𝑏 ) ) ) | 
						
							| 69 | 60 61 68 | 3brtr4d | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  𝑐  ∈  𝑉 )  →  ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  ≤  ( ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) | 
						
							| 70 | 69 | ralrimiva | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  →  ∀ 𝑐  ∈  𝑉 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  ≤  ( ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) | 
						
							| 71 |  | oveq1 | ⊢ ( 𝑧  =  ( 𝐹 ‘ 𝑐 )  →  ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) )  =  ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑎 ) ) ) | 
						
							| 72 |  | oveq1 | ⊢ ( 𝑧  =  ( 𝐹 ‘ 𝑐 )  →  ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) )  =  ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) | 
						
							| 73 | 71 72 | oveq12d | ⊢ ( 𝑧  =  ( 𝐹 ‘ 𝑐 )  →  ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) )  =  ( ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) | 
						
							| 74 | 73 | breq2d | ⊢ ( 𝑧  =  ( 𝐹 ‘ 𝑐 )  →  ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  ≤  ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) )  ↔  ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  ≤  ( ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ) | 
						
							| 75 | 74 | ralrn | ⊢ ( 𝐹  Fn  𝑉  →  ( ∀ 𝑧  ∈  ran  𝐹 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  ≤  ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) )  ↔  ∀ 𝑐  ∈  𝑉 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  ≤  ( ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ) | 
						
							| 76 | 26 75 | syl | ⊢ ( 𝜑  →  ( ∀ 𝑧  ∈  ran  𝐹 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  ≤  ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) )  ↔  ∀ 𝑐  ∈  𝑉 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  ≤  ( ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ) | 
						
							| 77 | 32 | raleqdv | ⊢ ( 𝜑  →  ( ∀ 𝑧  ∈  ran  𝐹 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  ≤  ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) )  ↔  ∀ 𝑧  ∈  𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  ≤  ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ) | 
						
							| 78 | 76 77 | bitr3d | ⊢ ( 𝜑  →  ( ∀ 𝑐  ∈  𝑉 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  ≤  ( ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) )  ↔  ∀ 𝑧  ∈  𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  ≤  ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ) | 
						
							| 79 | 78 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  →  ( ∀ 𝑐  ∈  𝑉 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  ≤  ( ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) )  ↔  ∀ 𝑧  ∈  𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  ≤  ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ) | 
						
							| 80 | 70 79 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  →  ∀ 𝑧  ∈  𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  ≤  ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) | 
						
							| 81 | 54 80 | jca | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  →  ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  =  0  ↔  ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑏 ) )  ∧  ∀ 𝑧  ∈  𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  ≤  ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ) | 
						
							| 82 | 81 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  𝑉 ∀ 𝑏  ∈  𝑉 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  =  0  ↔  ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑏 ) )  ∧  ∀ 𝑧  ∈  𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  ≤  ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ) | 
						
							| 83 | 27 | eqeq1d | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑏 )  →  ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  =  0  ↔  ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  =  0 ) ) | 
						
							| 84 |  | eqeq2 | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑏 )  →  ( ( 𝐹 ‘ 𝑎 )  =  𝑦  ↔  ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑏 ) ) ) | 
						
							| 85 | 83 84 | bibi12d | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑏 )  →  ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  =  0  ↔  ( 𝐹 ‘ 𝑎 )  =  𝑦 )  ↔  ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  =  0  ↔  ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑏 ) ) ) ) | 
						
							| 86 |  | oveq2 | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑏 )  →  ( 𝑧 𝐷 𝑦 )  =  ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) | 
						
							| 87 | 86 | oveq2d | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑏 )  →  ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( 𝑧 𝐷 𝑦 ) )  =  ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) | 
						
							| 88 | 27 87 | breq12d | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑏 )  →  ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  ≤  ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( 𝑧 𝐷 𝑦 ) )  ↔  ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  ≤  ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ) | 
						
							| 89 | 88 | ralbidv | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑏 )  →  ( ∀ 𝑧  ∈  𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  ≤  ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( 𝑧 𝐷 𝑦 ) )  ↔  ∀ 𝑧  ∈  𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  ≤  ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ) | 
						
							| 90 | 85 89 | anbi12d | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑏 )  →  ( ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  =  0  ↔  ( 𝐹 ‘ 𝑎 )  =  𝑦 )  ∧  ∀ 𝑧  ∈  𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  ≤  ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( 𝑧 𝐷 𝑦 ) ) )  ↔  ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  =  0  ↔  ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑏 ) )  ∧  ∀ 𝑧  ∈  𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  ≤  ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ) ) | 
						
							| 91 | 90 | ralrn | ⊢ ( 𝐹  Fn  𝑉  →  ( ∀ 𝑦  ∈  ran  𝐹 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  =  0  ↔  ( 𝐹 ‘ 𝑎 )  =  𝑦 )  ∧  ∀ 𝑧  ∈  𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  ≤  ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( 𝑧 𝐷 𝑦 ) ) )  ↔  ∀ 𝑏  ∈  𝑉 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  =  0  ↔  ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑏 ) )  ∧  ∀ 𝑧  ∈  𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  ≤  ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ) ) | 
						
							| 92 | 26 91 | syl | ⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  ran  𝐹 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  =  0  ↔  ( 𝐹 ‘ 𝑎 )  =  𝑦 )  ∧  ∀ 𝑧  ∈  𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  ≤  ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( 𝑧 𝐷 𝑦 ) ) )  ↔  ∀ 𝑏  ∈  𝑉 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  =  0  ↔  ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑏 ) )  ∧  ∀ 𝑧  ∈  𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  ≤  ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ) ) | 
						
							| 93 | 32 | raleqdv | ⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  ran  𝐹 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  =  0  ↔  ( 𝐹 ‘ 𝑎 )  =  𝑦 )  ∧  ∀ 𝑧  ∈  𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  ≤  ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( 𝑧 𝐷 𝑦 ) ) )  ↔  ∀ 𝑦  ∈  𝐵 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  =  0  ↔  ( 𝐹 ‘ 𝑎 )  =  𝑦 )  ∧  ∀ 𝑧  ∈  𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  ≤  ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( 𝑧 𝐷 𝑦 ) ) ) ) ) | 
						
							| 94 | 92 93 | bitr3d | ⊢ ( 𝜑  →  ( ∀ 𝑏  ∈  𝑉 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  =  0  ↔  ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑏 ) )  ∧  ∀ 𝑧  ∈  𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  ≤  ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) )  ↔  ∀ 𝑦  ∈  𝐵 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  =  0  ↔  ( 𝐹 ‘ 𝑎 )  =  𝑦 )  ∧  ∀ 𝑧  ∈  𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  ≤  ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( 𝑧 𝐷 𝑦 ) ) ) ) ) | 
						
							| 95 | 94 | ralbidv | ⊢ ( 𝜑  →  ( ∀ 𝑎  ∈  𝑉 ∀ 𝑏  ∈  𝑉 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  =  0  ↔  ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑏 ) )  ∧  ∀ 𝑧  ∈  𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) )  ≤  ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) )  ↔  ∀ 𝑎  ∈  𝑉 ∀ 𝑦  ∈  𝐵 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  =  0  ↔  ( 𝐹 ‘ 𝑎 )  =  𝑦 )  ∧  ∀ 𝑧  ∈  𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  ≤  ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( 𝑧 𝐷 𝑦 ) ) ) ) ) | 
						
							| 96 | 82 95 | mpbid | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  𝑉 ∀ 𝑦  ∈  𝐵 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  =  0  ↔  ( 𝐹 ‘ 𝑎 )  =  𝑦 )  ∧  ∀ 𝑧  ∈  𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  ≤  ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( 𝑧 𝐷 𝑦 ) ) ) ) | 
						
							| 97 | 37 | eqeq1d | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑎 )  →  ( ( 𝑥 𝐷 𝑦 )  =  0  ↔  ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  =  0 ) ) | 
						
							| 98 |  | eqeq1 | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑎 )  →  ( 𝑥  =  𝑦  ↔  ( 𝐹 ‘ 𝑎 )  =  𝑦 ) ) | 
						
							| 99 | 97 98 | bibi12d | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑎 )  →  ( ( ( 𝑥 𝐷 𝑦 )  =  0  ↔  𝑥  =  𝑦 )  ↔  ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  =  0  ↔  ( 𝐹 ‘ 𝑎 )  =  𝑦 ) ) ) | 
						
							| 100 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑎 )  →  ( 𝑧 𝐷 𝑥 )  =  ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) ) | 
						
							| 101 | 100 | oveq1d | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑎 )  →  ( ( 𝑧 𝐷 𝑥 )  +𝑒  ( 𝑧 𝐷 𝑦 ) )  =  ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( 𝑧 𝐷 𝑦 ) ) ) | 
						
							| 102 | 37 101 | breq12d | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑎 )  →  ( ( 𝑥 𝐷 𝑦 )  ≤  ( ( 𝑧 𝐷 𝑥 )  +𝑒  ( 𝑧 𝐷 𝑦 ) )  ↔  ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  ≤  ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( 𝑧 𝐷 𝑦 ) ) ) ) | 
						
							| 103 | 102 | ralbidv | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑎 )  →  ( ∀ 𝑧  ∈  𝐵 ( 𝑥 𝐷 𝑦 )  ≤  ( ( 𝑧 𝐷 𝑥 )  +𝑒  ( 𝑧 𝐷 𝑦 ) )  ↔  ∀ 𝑧  ∈  𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  ≤  ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( 𝑧 𝐷 𝑦 ) ) ) ) | 
						
							| 104 | 99 103 | anbi12d | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑎 )  →  ( ( ( ( 𝑥 𝐷 𝑦 )  =  0  ↔  𝑥  =  𝑦 )  ∧  ∀ 𝑧  ∈  𝐵 ( 𝑥 𝐷 𝑦 )  ≤  ( ( 𝑧 𝐷 𝑥 )  +𝑒  ( 𝑧 𝐷 𝑦 ) ) )  ↔  ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  =  0  ↔  ( 𝐹 ‘ 𝑎 )  =  𝑦 )  ∧  ∀ 𝑧  ∈  𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  ≤  ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( 𝑧 𝐷 𝑦 ) ) ) ) ) | 
						
							| 105 | 104 | ralbidv | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑎 )  →  ( ∀ 𝑦  ∈  𝐵 ( ( ( 𝑥 𝐷 𝑦 )  =  0  ↔  𝑥  =  𝑦 )  ∧  ∀ 𝑧  ∈  𝐵 ( 𝑥 𝐷 𝑦 )  ≤  ( ( 𝑧 𝐷 𝑥 )  +𝑒  ( 𝑧 𝐷 𝑦 ) ) )  ↔  ∀ 𝑦  ∈  𝐵 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  =  0  ↔  ( 𝐹 ‘ 𝑎 )  =  𝑦 )  ∧  ∀ 𝑧  ∈  𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  ≤  ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( 𝑧 𝐷 𝑦 ) ) ) ) ) | 
						
							| 106 | 105 | ralrn | ⊢ ( 𝐹  Fn  𝑉  →  ( ∀ 𝑥  ∈  ran  𝐹 ∀ 𝑦  ∈  𝐵 ( ( ( 𝑥 𝐷 𝑦 )  =  0  ↔  𝑥  =  𝑦 )  ∧  ∀ 𝑧  ∈  𝐵 ( 𝑥 𝐷 𝑦 )  ≤  ( ( 𝑧 𝐷 𝑥 )  +𝑒  ( 𝑧 𝐷 𝑦 ) ) )  ↔  ∀ 𝑎  ∈  𝑉 ∀ 𝑦  ∈  𝐵 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  =  0  ↔  ( 𝐹 ‘ 𝑎 )  =  𝑦 )  ∧  ∀ 𝑧  ∈  𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  ≤  ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( 𝑧 𝐷 𝑦 ) ) ) ) ) | 
						
							| 107 | 26 106 | syl | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  ran  𝐹 ∀ 𝑦  ∈  𝐵 ( ( ( 𝑥 𝐷 𝑦 )  =  0  ↔  𝑥  =  𝑦 )  ∧  ∀ 𝑧  ∈  𝐵 ( 𝑥 𝐷 𝑦 )  ≤  ( ( 𝑧 𝐷 𝑥 )  +𝑒  ( 𝑧 𝐷 𝑦 ) ) )  ↔  ∀ 𝑎  ∈  𝑉 ∀ 𝑦  ∈  𝐵 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  =  0  ↔  ( 𝐹 ‘ 𝑎 )  =  𝑦 )  ∧  ∀ 𝑧  ∈  𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  ≤  ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( 𝑧 𝐷 𝑦 ) ) ) ) ) | 
						
							| 108 | 32 | raleqdv | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  ran  𝐹 ∀ 𝑦  ∈  𝐵 ( ( ( 𝑥 𝐷 𝑦 )  =  0  ↔  𝑥  =  𝑦 )  ∧  ∀ 𝑧  ∈  𝐵 ( 𝑥 𝐷 𝑦 )  ≤  ( ( 𝑧 𝐷 𝑥 )  +𝑒  ( 𝑧 𝐷 𝑦 ) ) )  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( ( 𝑥 𝐷 𝑦 )  =  0  ↔  𝑥  =  𝑦 )  ∧  ∀ 𝑧  ∈  𝐵 ( 𝑥 𝐷 𝑦 )  ≤  ( ( 𝑧 𝐷 𝑥 )  +𝑒  ( 𝑧 𝐷 𝑦 ) ) ) ) ) | 
						
							| 109 | 107 108 | bitr3d | ⊢ ( 𝜑  →  ( ∀ 𝑎  ∈  𝑉 ∀ 𝑦  ∈  𝐵 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  =  0  ↔  ( 𝐹 ‘ 𝑎 )  =  𝑦 )  ∧  ∀ 𝑧  ∈  𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 )  ≤  ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) )  +𝑒  ( 𝑧 𝐷 𝑦 ) ) )  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( ( 𝑥 𝐷 𝑦 )  =  0  ↔  𝑥  =  𝑦 )  ∧  ∀ 𝑧  ∈  𝐵 ( 𝑥 𝐷 𝑦 )  ≤  ( ( 𝑧 𝐷 𝑥 )  +𝑒  ( 𝑧 𝐷 𝑦 ) ) ) ) ) | 
						
							| 110 | 96 109 | mpbid | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( ( 𝑥 𝐷 𝑦 )  =  0  ↔  𝑥  =  𝑦 )  ∧  ∀ 𝑧  ∈  𝐵 ( 𝑥 𝐷 𝑦 )  ≤  ( ( 𝑧 𝐷 𝑥 )  +𝑒  ( 𝑧 𝐷 𝑦 ) ) ) ) | 
						
							| 111 | 7 | elfvexd | ⊢ ( 𝜑  →  𝑉  ∈  V ) | 
						
							| 112 |  | focdmex | ⊢ ( 𝑉  ∈  V  →  ( 𝐹 : 𝑉 –onto→ 𝐵  →  𝐵  ∈  V ) ) | 
						
							| 113 | 111 9 112 | sylc | ⊢ ( 𝜑  →  𝐵  ∈  V ) | 
						
							| 114 |  | isxmet | ⊢ ( 𝐵  ∈  V  →  ( 𝐷  ∈  ( ∞Met ‘ 𝐵 )  ↔  ( 𝐷 : ( 𝐵  ×  𝐵 ) ⟶ ℝ*  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( ( 𝑥 𝐷 𝑦 )  =  0  ↔  𝑥  =  𝑦 )  ∧  ∀ 𝑧  ∈  𝐵 ( 𝑥 𝐷 𝑦 )  ≤  ( ( 𝑧 𝐷 𝑥 )  +𝑒  ( 𝑧 𝐷 𝑦 ) ) ) ) ) ) | 
						
							| 115 | 113 114 | syl | ⊢ ( 𝜑  →  ( 𝐷  ∈  ( ∞Met ‘ 𝐵 )  ↔  ( 𝐷 : ( 𝐵  ×  𝐵 ) ⟶ ℝ*  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( ( 𝑥 𝐷 𝑦 )  =  0  ↔  𝑥  =  𝑦 )  ∧  ∀ 𝑧  ∈  𝐵 ( 𝑥 𝐷 𝑦 )  ≤  ( ( 𝑧 𝐷 𝑥 )  +𝑒  ( 𝑧 𝐷 𝑦 ) ) ) ) ) ) | 
						
							| 116 | 46 110 115 | mpbir2and | ⊢ ( 𝜑  →  𝐷  ∈  ( ∞Met ‘ 𝐵 ) ) |