| Step | Hyp | Ref | Expression | 
						
							| 1 |  | imasf1obl.u | ⊢ ( 𝜑  →  𝑈  =  ( 𝐹  “s  𝑅 ) ) | 
						
							| 2 |  | imasf1obl.v | ⊢ ( 𝜑  →  𝑉  =  ( Base ‘ 𝑅 ) ) | 
						
							| 3 |  | imasf1obl.f | ⊢ ( 𝜑  →  𝐹 : 𝑉 –1-1-onto→ 𝐵 ) | 
						
							| 4 |  | imasf1oxms.r | ⊢ ( 𝜑  →  𝑅  ∈  ∞MetSp ) | 
						
							| 5 |  | eqid | ⊢ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) )  =  ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) | 
						
							| 6 |  | eqid | ⊢ ( dist ‘ 𝑈 )  =  ( dist ‘ 𝑈 ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 8 |  | eqid | ⊢ ( ( dist ‘ 𝑅 )  ↾  ( ( Base ‘ 𝑅 )  ×  ( Base ‘ 𝑅 ) ) )  =  ( ( dist ‘ 𝑅 )  ↾  ( ( Base ‘ 𝑅 )  ×  ( Base ‘ 𝑅 ) ) ) | 
						
							| 9 | 7 8 | xmsxmet | ⊢ ( 𝑅  ∈  ∞MetSp  →  ( ( dist ‘ 𝑅 )  ↾  ( ( Base ‘ 𝑅 )  ×  ( Base ‘ 𝑅 ) ) )  ∈  ( ∞Met ‘ ( Base ‘ 𝑅 ) ) ) | 
						
							| 10 | 4 9 | syl | ⊢ ( 𝜑  →  ( ( dist ‘ 𝑅 )  ↾  ( ( Base ‘ 𝑅 )  ×  ( Base ‘ 𝑅 ) ) )  ∈  ( ∞Met ‘ ( Base ‘ 𝑅 ) ) ) | 
						
							| 11 | 2 | sqxpeqd | ⊢ ( 𝜑  →  ( 𝑉  ×  𝑉 )  =  ( ( Base ‘ 𝑅 )  ×  ( Base ‘ 𝑅 ) ) ) | 
						
							| 12 | 11 | reseq2d | ⊢ ( 𝜑  →  ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) )  =  ( ( dist ‘ 𝑅 )  ↾  ( ( Base ‘ 𝑅 )  ×  ( Base ‘ 𝑅 ) ) ) ) | 
						
							| 13 | 2 | fveq2d | ⊢ ( 𝜑  →  ( ∞Met ‘ 𝑉 )  =  ( ∞Met ‘ ( Base ‘ 𝑅 ) ) ) | 
						
							| 14 | 10 12 13 | 3eltr4d | ⊢ ( 𝜑  →  ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) )  ∈  ( ∞Met ‘ 𝑉 ) ) | 
						
							| 15 | 1 2 3 4 5 6 14 | imasf1oxmet | ⊢ ( 𝜑  →  ( dist ‘ 𝑈 )  ∈  ( ∞Met ‘ 𝐵 ) ) | 
						
							| 16 |  | f1ofo | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝐵  →  𝐹 : 𝑉 –onto→ 𝐵 ) | 
						
							| 17 | 3 16 | syl | ⊢ ( 𝜑  →  𝐹 : 𝑉 –onto→ 𝐵 ) | 
						
							| 18 | 1 2 17 4 | imasbas | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝑈 ) ) | 
						
							| 19 | 18 | fveq2d | ⊢ ( 𝜑  →  ( ∞Met ‘ 𝐵 )  =  ( ∞Met ‘ ( Base ‘ 𝑈 ) ) ) | 
						
							| 20 | 15 19 | eleqtrd | ⊢ ( 𝜑  →  ( dist ‘ 𝑈 )  ∈  ( ∞Met ‘ ( Base ‘ 𝑈 ) ) ) | 
						
							| 21 |  | ssid | ⊢ ( Base ‘ 𝑈 )  ⊆  ( Base ‘ 𝑈 ) | 
						
							| 22 |  | xmetres2 | ⊢ ( ( ( dist ‘ 𝑈 )  ∈  ( ∞Met ‘ ( Base ‘ 𝑈 ) )  ∧  ( Base ‘ 𝑈 )  ⊆  ( Base ‘ 𝑈 ) )  →  ( ( dist ‘ 𝑈 )  ↾  ( ( Base ‘ 𝑈 )  ×  ( Base ‘ 𝑈 ) ) )  ∈  ( ∞Met ‘ ( Base ‘ 𝑈 ) ) ) | 
						
							| 23 | 20 21 22 | sylancl | ⊢ ( 𝜑  →  ( ( dist ‘ 𝑈 )  ↾  ( ( Base ‘ 𝑈 )  ×  ( Base ‘ 𝑈 ) ) )  ∈  ( ∞Met ‘ ( Base ‘ 𝑈 ) ) ) | 
						
							| 24 |  | eqid | ⊢ ( TopOpen ‘ 𝑅 )  =  ( TopOpen ‘ 𝑅 ) | 
						
							| 25 |  | eqid | ⊢ ( TopOpen ‘ 𝑈 )  =  ( TopOpen ‘ 𝑈 ) | 
						
							| 26 | 1 2 17 4 24 25 | imastopn | ⊢ ( 𝜑  →  ( TopOpen ‘ 𝑈 )  =  ( ( TopOpen ‘ 𝑅 )  qTop  𝐹 ) ) | 
						
							| 27 | 24 7 8 | xmstopn | ⊢ ( 𝑅  ∈  ∞MetSp  →  ( TopOpen ‘ 𝑅 )  =  ( MetOpen ‘ ( ( dist ‘ 𝑅 )  ↾  ( ( Base ‘ 𝑅 )  ×  ( Base ‘ 𝑅 ) ) ) ) ) | 
						
							| 28 | 4 27 | syl | ⊢ ( 𝜑  →  ( TopOpen ‘ 𝑅 )  =  ( MetOpen ‘ ( ( dist ‘ 𝑅 )  ↾  ( ( Base ‘ 𝑅 )  ×  ( Base ‘ 𝑅 ) ) ) ) ) | 
						
							| 29 | 12 | fveq2d | ⊢ ( 𝜑  →  ( MetOpen ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) )  =  ( MetOpen ‘ ( ( dist ‘ 𝑅 )  ↾  ( ( Base ‘ 𝑅 )  ×  ( Base ‘ 𝑅 ) ) ) ) ) | 
						
							| 30 | 28 29 | eqtr4d | ⊢ ( 𝜑  →  ( TopOpen ‘ 𝑅 )  =  ( MetOpen ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) ) ) | 
						
							| 31 | 30 | oveq1d | ⊢ ( 𝜑  →  ( ( TopOpen ‘ 𝑅 )  qTop  𝐹 )  =  ( ( MetOpen ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) )  qTop  𝐹 ) ) | 
						
							| 32 |  | blbas | ⊢ ( ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) )  ∈  ( ∞Met ‘ 𝑉 )  →  ran  ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) )  ∈  TopBases ) | 
						
							| 33 | 14 32 | syl | ⊢ ( 𝜑  →  ran  ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) )  ∈  TopBases ) | 
						
							| 34 |  | unirnbl | ⊢ ( ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) )  ∈  ( ∞Met ‘ 𝑉 )  →  ∪  ran  ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) )  =  𝑉 ) | 
						
							| 35 |  | f1oeq2 | ⊢ ( ∪  ran  ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) )  =  𝑉  →  ( 𝐹 : ∪  ran  ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) ) –1-1-onto→ 𝐵  ↔  𝐹 : 𝑉 –1-1-onto→ 𝐵 ) ) | 
						
							| 36 | 14 34 35 | 3syl | ⊢ ( 𝜑  →  ( 𝐹 : ∪  ran  ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) ) –1-1-onto→ 𝐵  ↔  𝐹 : 𝑉 –1-1-onto→ 𝐵 ) ) | 
						
							| 37 | 3 36 | mpbird | ⊢ ( 𝜑  →  𝐹 : ∪  ran  ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) ) –1-1-onto→ 𝐵 ) | 
						
							| 38 |  | eqid | ⊢ ∪  ran  ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) )  =  ∪  ran  ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) ) | 
						
							| 39 | 38 | tgqtop | ⊢ ( ( ran  ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) )  ∈  TopBases  ∧  𝐹 : ∪  ran  ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) ) –1-1-onto→ 𝐵 )  →  ( ( topGen ‘ ran  ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) ) )  qTop  𝐹 )  =  ( topGen ‘ ( ran  ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) )  qTop  𝐹 ) ) ) | 
						
							| 40 | 33 37 39 | syl2anc | ⊢ ( 𝜑  →  ( ( topGen ‘ ran  ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) ) )  qTop  𝐹 )  =  ( topGen ‘ ( ran  ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) )  qTop  𝐹 ) ) ) | 
						
							| 41 |  | eqid | ⊢ ( MetOpen ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) )  =  ( MetOpen ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) ) | 
						
							| 42 | 41 | mopnval | ⊢ ( ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) )  ∈  ( ∞Met ‘ 𝑉 )  →  ( MetOpen ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) )  =  ( topGen ‘ ran  ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) ) ) ) | 
						
							| 43 | 14 42 | syl | ⊢ ( 𝜑  →  ( MetOpen ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) )  =  ( topGen ‘ ran  ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) ) ) ) | 
						
							| 44 | 43 | oveq1d | ⊢ ( 𝜑  →  ( ( MetOpen ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) )  qTop  𝐹 )  =  ( ( topGen ‘ ran  ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) ) )  qTop  𝐹 ) ) | 
						
							| 45 |  | eqid | ⊢ ( MetOpen ‘ ( dist ‘ 𝑈 ) )  =  ( MetOpen ‘ ( dist ‘ 𝑈 ) ) | 
						
							| 46 | 45 | mopnval | ⊢ ( ( dist ‘ 𝑈 )  ∈  ( ∞Met ‘ 𝐵 )  →  ( MetOpen ‘ ( dist ‘ 𝑈 ) )  =  ( topGen ‘ ran  ( ball ‘ ( dist ‘ 𝑈 ) ) ) ) | 
						
							| 47 | 15 46 | syl | ⊢ ( 𝜑  →  ( MetOpen ‘ ( dist ‘ 𝑈 ) )  =  ( topGen ‘ ran  ( ball ‘ ( dist ‘ 𝑈 ) ) ) ) | 
						
							| 48 |  | xmetf | ⊢ ( ( dist ‘ 𝑈 )  ∈  ( ∞Met ‘ ( Base ‘ 𝑈 ) )  →  ( dist ‘ 𝑈 ) : ( ( Base ‘ 𝑈 )  ×  ( Base ‘ 𝑈 ) ) ⟶ ℝ* ) | 
						
							| 49 | 20 48 | syl | ⊢ ( 𝜑  →  ( dist ‘ 𝑈 ) : ( ( Base ‘ 𝑈 )  ×  ( Base ‘ 𝑈 ) ) ⟶ ℝ* ) | 
						
							| 50 |  | ffn | ⊢ ( ( dist ‘ 𝑈 ) : ( ( Base ‘ 𝑈 )  ×  ( Base ‘ 𝑈 ) ) ⟶ ℝ*  →  ( dist ‘ 𝑈 )  Fn  ( ( Base ‘ 𝑈 )  ×  ( Base ‘ 𝑈 ) ) ) | 
						
							| 51 |  | fnresdm | ⊢ ( ( dist ‘ 𝑈 )  Fn  ( ( Base ‘ 𝑈 )  ×  ( Base ‘ 𝑈 ) )  →  ( ( dist ‘ 𝑈 )  ↾  ( ( Base ‘ 𝑈 )  ×  ( Base ‘ 𝑈 ) ) )  =  ( dist ‘ 𝑈 ) ) | 
						
							| 52 | 49 50 51 | 3syl | ⊢ ( 𝜑  →  ( ( dist ‘ 𝑈 )  ↾  ( ( Base ‘ 𝑈 )  ×  ( Base ‘ 𝑈 ) ) )  =  ( dist ‘ 𝑈 ) ) | 
						
							| 53 | 52 | fveq2d | ⊢ ( 𝜑  →  ( MetOpen ‘ ( ( dist ‘ 𝑈 )  ↾  ( ( Base ‘ 𝑈 )  ×  ( Base ‘ 𝑈 ) ) ) )  =  ( MetOpen ‘ ( dist ‘ 𝑈 ) ) ) | 
						
							| 54 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ⊆  𝐵 )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑟  ∈  ℝ* ) )  →  𝐹 : 𝑉 –1-1-onto→ 𝐵 ) | 
						
							| 55 |  | f1of1 | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝐵  →  𝐹 : 𝑉 –1-1→ 𝐵 ) | 
						
							| 56 | 54 55 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ⊆  𝐵 )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑟  ∈  ℝ* ) )  →  𝐹 : 𝑉 –1-1→ 𝐵 ) | 
						
							| 57 |  | cnvimass | ⊢ ( ◡ 𝐹  “  𝑥 )  ⊆  dom  𝐹 | 
						
							| 58 |  | f1odm | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝐵  →  dom  𝐹  =  𝑉 ) | 
						
							| 59 | 54 58 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ⊆  𝐵 )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑟  ∈  ℝ* ) )  →  dom  𝐹  =  𝑉 ) | 
						
							| 60 | 57 59 | sseqtrid | ⊢ ( ( ( 𝜑  ∧  𝑥  ⊆  𝐵 )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑟  ∈  ℝ* ) )  →  ( ◡ 𝐹  “  𝑥 )  ⊆  𝑉 ) | 
						
							| 61 | 14 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ⊆  𝐵 )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑟  ∈  ℝ* ) )  →  ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) )  ∈  ( ∞Met ‘ 𝑉 ) ) | 
						
							| 62 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑥  ⊆  𝐵 )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑟  ∈  ℝ* ) )  →  𝑦  ∈  𝑉 ) | 
						
							| 63 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑥  ⊆  𝐵 )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑟  ∈  ℝ* ) )  →  𝑟  ∈  ℝ* ) | 
						
							| 64 |  | blssm | ⊢ ( ( ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) )  ∈  ( ∞Met ‘ 𝑉 )  ∧  𝑦  ∈  𝑉  ∧  𝑟  ∈  ℝ* )  →  ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) ) 𝑟 )  ⊆  𝑉 ) | 
						
							| 65 | 61 62 63 64 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ⊆  𝐵 )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑟  ∈  ℝ* ) )  →  ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) ) 𝑟 )  ⊆  𝑉 ) | 
						
							| 66 |  | f1imaeq | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝐵  ∧  ( ( ◡ 𝐹  “  𝑥 )  ⊆  𝑉  ∧  ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) ) 𝑟 )  ⊆  𝑉 ) )  →  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  =  ( 𝐹  “  ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) ) 𝑟 ) )  ↔  ( ◡ 𝐹  “  𝑥 )  =  ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) ) 𝑟 ) ) ) | 
						
							| 67 | 56 60 65 66 | syl12anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ⊆  𝐵 )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑟  ∈  ℝ* ) )  →  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  =  ( 𝐹  “  ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) ) 𝑟 ) )  ↔  ( ◡ 𝐹  “  𝑥 )  =  ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) ) 𝑟 ) ) ) | 
						
							| 68 | 54 16 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ⊆  𝐵 )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑟  ∈  ℝ* ) )  →  𝐹 : 𝑉 –onto→ 𝐵 ) | 
						
							| 69 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑥  ⊆  𝐵 )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑟  ∈  ℝ* ) )  →  𝑥  ⊆  𝐵 ) | 
						
							| 70 |  | foimacnv | ⊢ ( ( 𝐹 : 𝑉 –onto→ 𝐵  ∧  𝑥  ⊆  𝐵 )  →  ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  =  𝑥 ) | 
						
							| 71 | 68 69 70 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ⊆  𝐵 )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑟  ∈  ℝ* ) )  →  ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  =  𝑥 ) | 
						
							| 72 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ⊆  𝐵 )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑟  ∈  ℝ* ) )  →  𝑈  =  ( 𝐹  “s  𝑅 ) ) | 
						
							| 73 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ⊆  𝐵 )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑟  ∈  ℝ* ) )  →  𝑉  =  ( Base ‘ 𝑅 ) ) | 
						
							| 74 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ⊆  𝐵 )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑟  ∈  ℝ* ) )  →  𝑅  ∈  ∞MetSp ) | 
						
							| 75 | 72 73 54 74 5 6 61 62 63 | imasf1obl | ⊢ ( ( ( 𝜑  ∧  𝑥  ⊆  𝐵 )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑟  ∈  ℝ* ) )  →  ( ( 𝐹 ‘ 𝑦 ) ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 )  =  ( 𝐹  “  ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) ) 𝑟 ) ) ) | 
						
							| 76 | 75 | eqcomd | ⊢ ( ( ( 𝜑  ∧  𝑥  ⊆  𝐵 )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑟  ∈  ℝ* ) )  →  ( 𝐹  “  ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) ) 𝑟 ) )  =  ( ( 𝐹 ‘ 𝑦 ) ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ) | 
						
							| 77 | 71 76 | eqeq12d | ⊢ ( ( ( 𝜑  ∧  𝑥  ⊆  𝐵 )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑟  ∈  ℝ* ) )  →  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  =  ( 𝐹  “  ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) ) 𝑟 ) )  ↔  𝑥  =  ( ( 𝐹 ‘ 𝑦 ) ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ) ) | 
						
							| 78 | 67 77 | bitr3d | ⊢ ( ( ( 𝜑  ∧  𝑥  ⊆  𝐵 )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑟  ∈  ℝ* ) )  →  ( ( ◡ 𝐹  “  𝑥 )  =  ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) ) 𝑟 )  ↔  𝑥  =  ( ( 𝐹 ‘ 𝑦 ) ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ) ) | 
						
							| 79 | 78 | 2rexbidva | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  𝐵 )  →  ( ∃ 𝑦  ∈  𝑉 ∃ 𝑟  ∈  ℝ* ( ◡ 𝐹  “  𝑥 )  =  ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) ) 𝑟 )  ↔  ∃ 𝑦  ∈  𝑉 ∃ 𝑟  ∈  ℝ* 𝑥  =  ( ( 𝐹 ‘ 𝑦 ) ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ) ) | 
						
							| 80 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  𝐵 )  →  𝐹 : 𝑉 –1-1-onto→ 𝐵 ) | 
						
							| 81 |  | f1ofn | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝐵  →  𝐹  Fn  𝑉 ) | 
						
							| 82 |  | oveq1 | ⊢ ( 𝑧  =  ( 𝐹 ‘ 𝑦 )  →  ( 𝑧 ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 )  =  ( ( 𝐹 ‘ 𝑦 ) ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ) | 
						
							| 83 | 82 | eqeq2d | ⊢ ( 𝑧  =  ( 𝐹 ‘ 𝑦 )  →  ( 𝑥  =  ( 𝑧 ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 )  ↔  𝑥  =  ( ( 𝐹 ‘ 𝑦 ) ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ) ) | 
						
							| 84 | 83 | rexbidv | ⊢ ( 𝑧  =  ( 𝐹 ‘ 𝑦 )  →  ( ∃ 𝑟  ∈  ℝ* 𝑥  =  ( 𝑧 ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 )  ↔  ∃ 𝑟  ∈  ℝ* 𝑥  =  ( ( 𝐹 ‘ 𝑦 ) ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ) ) | 
						
							| 85 | 84 | rexrn | ⊢ ( 𝐹  Fn  𝑉  →  ( ∃ 𝑧  ∈  ran  𝐹 ∃ 𝑟  ∈  ℝ* 𝑥  =  ( 𝑧 ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 )  ↔  ∃ 𝑦  ∈  𝑉 ∃ 𝑟  ∈  ℝ* 𝑥  =  ( ( 𝐹 ‘ 𝑦 ) ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ) ) | 
						
							| 86 | 80 81 85 | 3syl | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  𝐵 )  →  ( ∃ 𝑧  ∈  ran  𝐹 ∃ 𝑟  ∈  ℝ* 𝑥  =  ( 𝑧 ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 )  ↔  ∃ 𝑦  ∈  𝑉 ∃ 𝑟  ∈  ℝ* 𝑥  =  ( ( 𝐹 ‘ 𝑦 ) ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ) ) | 
						
							| 87 |  | forn | ⊢ ( 𝐹 : 𝑉 –onto→ 𝐵  →  ran  𝐹  =  𝐵 ) | 
						
							| 88 | 80 16 87 | 3syl | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  𝐵 )  →  ran  𝐹  =  𝐵 ) | 
						
							| 89 | 88 | rexeqdv | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  𝐵 )  →  ( ∃ 𝑧  ∈  ran  𝐹 ∃ 𝑟  ∈  ℝ* 𝑥  =  ( 𝑧 ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 )  ↔  ∃ 𝑧  ∈  𝐵 ∃ 𝑟  ∈  ℝ* 𝑥  =  ( 𝑧 ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ) ) | 
						
							| 90 | 79 86 89 | 3bitr2d | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  𝐵 )  →  ( ∃ 𝑦  ∈  𝑉 ∃ 𝑟  ∈  ℝ* ( ◡ 𝐹  “  𝑥 )  =  ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) ) 𝑟 )  ↔  ∃ 𝑧  ∈  𝐵 ∃ 𝑟  ∈  ℝ* 𝑥  =  ( 𝑧 ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ) ) | 
						
							| 91 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  𝐵 )  →  ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) )  ∈  ( ∞Met ‘ 𝑉 ) ) | 
						
							| 92 |  | blrn | ⊢ ( ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) )  ∈  ( ∞Met ‘ 𝑉 )  →  ( ( ◡ 𝐹  “  𝑥 )  ∈  ran  ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) )  ↔  ∃ 𝑦  ∈  𝑉 ∃ 𝑟  ∈  ℝ* ( ◡ 𝐹  “  𝑥 )  =  ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) ) 𝑟 ) ) ) | 
						
							| 93 | 91 92 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  𝐵 )  →  ( ( ◡ 𝐹  “  𝑥 )  ∈  ran  ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) )  ↔  ∃ 𝑦  ∈  𝑉 ∃ 𝑟  ∈  ℝ* ( ◡ 𝐹  “  𝑥 )  =  ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) ) 𝑟 ) ) ) | 
						
							| 94 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  𝐵 )  →  ( dist ‘ 𝑈 )  ∈  ( ∞Met ‘ 𝐵 ) ) | 
						
							| 95 |  | blrn | ⊢ ( ( dist ‘ 𝑈 )  ∈  ( ∞Met ‘ 𝐵 )  →  ( 𝑥  ∈  ran  ( ball ‘ ( dist ‘ 𝑈 ) )  ↔  ∃ 𝑧  ∈  𝐵 ∃ 𝑟  ∈  ℝ* 𝑥  =  ( 𝑧 ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ) ) | 
						
							| 96 | 94 95 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  𝐵 )  →  ( 𝑥  ∈  ran  ( ball ‘ ( dist ‘ 𝑈 ) )  ↔  ∃ 𝑧  ∈  𝐵 ∃ 𝑟  ∈  ℝ* 𝑥  =  ( 𝑧 ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ) ) | 
						
							| 97 | 90 93 96 | 3bitr4d | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  𝐵 )  →  ( ( ◡ 𝐹  “  𝑥 )  ∈  ran  ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) )  ↔  𝑥  ∈  ran  ( ball ‘ ( dist ‘ 𝑈 ) ) ) ) | 
						
							| 98 | 97 | pm5.32da | ⊢ ( 𝜑  →  ( ( 𝑥  ⊆  𝐵  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  ran  ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) ) )  ↔  ( 𝑥  ⊆  𝐵  ∧  𝑥  ∈  ran  ( ball ‘ ( dist ‘ 𝑈 ) ) ) ) ) | 
						
							| 99 |  | f1ofo | ⊢ ( 𝐹 : ∪  ran  ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) ) –1-1-onto→ 𝐵  →  𝐹 : ∪  ran  ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) ) –onto→ 𝐵 ) | 
						
							| 100 | 37 99 | syl | ⊢ ( 𝜑  →  𝐹 : ∪  ran  ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) ) –onto→ 𝐵 ) | 
						
							| 101 | 38 | elqtop2 | ⊢ ( ( ran  ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) )  ∈  TopBases  ∧  𝐹 : ∪  ran  ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) ) –onto→ 𝐵 )  →  ( 𝑥  ∈  ( ran  ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) )  qTop  𝐹 )  ↔  ( 𝑥  ⊆  𝐵  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  ran  ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) ) ) ) ) | 
						
							| 102 | 33 100 101 | syl2anc | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( ran  ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) )  qTop  𝐹 )  ↔  ( 𝑥  ⊆  𝐵  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  ran  ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) ) ) ) ) | 
						
							| 103 |  | blf | ⊢ ( ( dist ‘ 𝑈 )  ∈  ( ∞Met ‘ 𝐵 )  →  ( ball ‘ ( dist ‘ 𝑈 ) ) : ( 𝐵  ×  ℝ* ) ⟶ 𝒫  𝐵 ) | 
						
							| 104 |  | frn | ⊢ ( ( ball ‘ ( dist ‘ 𝑈 ) ) : ( 𝐵  ×  ℝ* ) ⟶ 𝒫  𝐵  →  ran  ( ball ‘ ( dist ‘ 𝑈 ) )  ⊆  𝒫  𝐵 ) | 
						
							| 105 | 15 103 104 | 3syl | ⊢ ( 𝜑  →  ran  ( ball ‘ ( dist ‘ 𝑈 ) )  ⊆  𝒫  𝐵 ) | 
						
							| 106 | 105 | sseld | ⊢ ( 𝜑  →  ( 𝑥  ∈  ran  ( ball ‘ ( dist ‘ 𝑈 ) )  →  𝑥  ∈  𝒫  𝐵 ) ) | 
						
							| 107 |  | elpwi | ⊢ ( 𝑥  ∈  𝒫  𝐵  →  𝑥  ⊆  𝐵 ) | 
						
							| 108 | 106 107 | syl6 | ⊢ ( 𝜑  →  ( 𝑥  ∈  ran  ( ball ‘ ( dist ‘ 𝑈 ) )  →  𝑥  ⊆  𝐵 ) ) | 
						
							| 109 | 108 | pm4.71rd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ran  ( ball ‘ ( dist ‘ 𝑈 ) )  ↔  ( 𝑥  ⊆  𝐵  ∧  𝑥  ∈  ran  ( ball ‘ ( dist ‘ 𝑈 ) ) ) ) ) | 
						
							| 110 | 98 102 109 | 3bitr4d | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( ran  ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) )  qTop  𝐹 )  ↔  𝑥  ∈  ran  ( ball ‘ ( dist ‘ 𝑈 ) ) ) ) | 
						
							| 111 | 110 | eqrdv | ⊢ ( 𝜑  →  ( ran  ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) )  qTop  𝐹 )  =  ran  ( ball ‘ ( dist ‘ 𝑈 ) ) ) | 
						
							| 112 | 111 | fveq2d | ⊢ ( 𝜑  →  ( topGen ‘ ( ran  ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) )  qTop  𝐹 ) )  =  ( topGen ‘ ran  ( ball ‘ ( dist ‘ 𝑈 ) ) ) ) | 
						
							| 113 | 47 53 112 | 3eqtr4d | ⊢ ( 𝜑  →  ( MetOpen ‘ ( ( dist ‘ 𝑈 )  ↾  ( ( Base ‘ 𝑈 )  ×  ( Base ‘ 𝑈 ) ) ) )  =  ( topGen ‘ ( ran  ( ball ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) )  qTop  𝐹 ) ) ) | 
						
							| 114 | 40 44 113 | 3eqtr4d | ⊢ ( 𝜑  →  ( ( MetOpen ‘ ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) )  qTop  𝐹 )  =  ( MetOpen ‘ ( ( dist ‘ 𝑈 )  ↾  ( ( Base ‘ 𝑈 )  ×  ( Base ‘ 𝑈 ) ) ) ) ) | 
						
							| 115 | 26 31 114 | 3eqtrd | ⊢ ( 𝜑  →  ( TopOpen ‘ 𝑈 )  =  ( MetOpen ‘ ( ( dist ‘ 𝑈 )  ↾  ( ( Base ‘ 𝑈 )  ×  ( Base ‘ 𝑈 ) ) ) ) ) | 
						
							| 116 |  | eqid | ⊢ ( Base ‘ 𝑈 )  =  ( Base ‘ 𝑈 ) | 
						
							| 117 |  | eqid | ⊢ ( ( dist ‘ 𝑈 )  ↾  ( ( Base ‘ 𝑈 )  ×  ( Base ‘ 𝑈 ) ) )  =  ( ( dist ‘ 𝑈 )  ↾  ( ( Base ‘ 𝑈 )  ×  ( Base ‘ 𝑈 ) ) ) | 
						
							| 118 | 25 116 117 | isxms2 | ⊢ ( 𝑈  ∈  ∞MetSp  ↔  ( ( ( dist ‘ 𝑈 )  ↾  ( ( Base ‘ 𝑈 )  ×  ( Base ‘ 𝑈 ) ) )  ∈  ( ∞Met ‘ ( Base ‘ 𝑈 ) )  ∧  ( TopOpen ‘ 𝑈 )  =  ( MetOpen ‘ ( ( dist ‘ 𝑈 )  ↾  ( ( Base ‘ 𝑈 )  ×  ( Base ‘ 𝑈 ) ) ) ) ) ) | 
						
							| 119 | 23 115 118 | sylanbrc | ⊢ ( 𝜑  →  𝑈  ∈  ∞MetSp ) |