Step |
Hyp |
Ref |
Expression |
1 |
|
imasf1obl.u |
⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) |
2 |
|
imasf1obl.v |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) |
3 |
|
imasf1obl.f |
⊢ ( 𝜑 → 𝐹 : 𝑉 –1-1-onto→ 𝐵 ) |
4 |
|
imasf1oxms.r |
⊢ ( 𝜑 → 𝑅 ∈ ∞MetSp ) |
5 |
|
eqid |
⊢ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) = ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) |
6 |
|
eqid |
⊢ ( dist ‘ 𝑈 ) = ( dist ‘ 𝑈 ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
8 |
|
eqid |
⊢ ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) = ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) |
9 |
7 8
|
xmsxmet |
⊢ ( 𝑅 ∈ ∞MetSp → ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑅 ) ) ) |
10 |
4 9
|
syl |
⊢ ( 𝜑 → ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑅 ) ) ) |
11 |
2
|
sqxpeqd |
⊢ ( 𝜑 → ( 𝑉 × 𝑉 ) = ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) |
12 |
11
|
reseq2d |
⊢ ( 𝜑 → ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) = ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ) |
13 |
2
|
fveq2d |
⊢ ( 𝜑 → ( ∞Met ‘ 𝑉 ) = ( ∞Met ‘ ( Base ‘ 𝑅 ) ) ) |
14 |
10 12 13
|
3eltr4d |
⊢ ( 𝜑 → ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ∈ ( ∞Met ‘ 𝑉 ) ) |
15 |
1 2 3 4 5 6 14
|
imasf1oxmet |
⊢ ( 𝜑 → ( dist ‘ 𝑈 ) ∈ ( ∞Met ‘ 𝐵 ) ) |
16 |
|
f1ofo |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝐵 → 𝐹 : 𝑉 –onto→ 𝐵 ) |
17 |
3 16
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) |
18 |
1 2 17 4
|
imasbas |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑈 ) ) |
19 |
18
|
fveq2d |
⊢ ( 𝜑 → ( ∞Met ‘ 𝐵 ) = ( ∞Met ‘ ( Base ‘ 𝑈 ) ) ) |
20 |
15 19
|
eleqtrd |
⊢ ( 𝜑 → ( dist ‘ 𝑈 ) ∈ ( ∞Met ‘ ( Base ‘ 𝑈 ) ) ) |
21 |
|
ssid |
⊢ ( Base ‘ 𝑈 ) ⊆ ( Base ‘ 𝑈 ) |
22 |
|
xmetres2 |
⊢ ( ( ( dist ‘ 𝑈 ) ∈ ( ∞Met ‘ ( Base ‘ 𝑈 ) ) ∧ ( Base ‘ 𝑈 ) ⊆ ( Base ‘ 𝑈 ) ) → ( ( dist ‘ 𝑈 ) ↾ ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑈 ) ) ) |
23 |
20 21 22
|
sylancl |
⊢ ( 𝜑 → ( ( dist ‘ 𝑈 ) ↾ ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑈 ) ) ) |
24 |
|
eqid |
⊢ ( TopOpen ‘ 𝑅 ) = ( TopOpen ‘ 𝑅 ) |
25 |
|
eqid |
⊢ ( TopOpen ‘ 𝑈 ) = ( TopOpen ‘ 𝑈 ) |
26 |
1 2 17 4 24 25
|
imastopn |
⊢ ( 𝜑 → ( TopOpen ‘ 𝑈 ) = ( ( TopOpen ‘ 𝑅 ) qTop 𝐹 ) ) |
27 |
24 7 8
|
xmstopn |
⊢ ( 𝑅 ∈ ∞MetSp → ( TopOpen ‘ 𝑅 ) = ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ) ) |
28 |
4 27
|
syl |
⊢ ( 𝜑 → ( TopOpen ‘ 𝑅 ) = ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ) ) |
29 |
12
|
fveq2d |
⊢ ( 𝜑 → ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) = ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ) ) |
30 |
28 29
|
eqtr4d |
⊢ ( 𝜑 → ( TopOpen ‘ 𝑅 ) = ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) ) |
31 |
30
|
oveq1d |
⊢ ( 𝜑 → ( ( TopOpen ‘ 𝑅 ) qTop 𝐹 ) = ( ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) qTop 𝐹 ) ) |
32 |
|
blbas |
⊢ ( ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ∈ ( ∞Met ‘ 𝑉 ) → ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) ∈ TopBases ) |
33 |
14 32
|
syl |
⊢ ( 𝜑 → ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) ∈ TopBases ) |
34 |
|
unirnbl |
⊢ ( ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ∈ ( ∞Met ‘ 𝑉 ) → ∪ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) = 𝑉 ) |
35 |
|
f1oeq2 |
⊢ ( ∪ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) = 𝑉 → ( 𝐹 : ∪ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) –1-1-onto→ 𝐵 ↔ 𝐹 : 𝑉 –1-1-onto→ 𝐵 ) ) |
36 |
14 34 35
|
3syl |
⊢ ( 𝜑 → ( 𝐹 : ∪ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) –1-1-onto→ 𝐵 ↔ 𝐹 : 𝑉 –1-1-onto→ 𝐵 ) ) |
37 |
3 36
|
mpbird |
⊢ ( 𝜑 → 𝐹 : ∪ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) –1-1-onto→ 𝐵 ) |
38 |
|
eqid |
⊢ ∪ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) = ∪ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) |
39 |
38
|
tgqtop |
⊢ ( ( ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) ∈ TopBases ∧ 𝐹 : ∪ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) –1-1-onto→ 𝐵 ) → ( ( topGen ‘ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) ) qTop 𝐹 ) = ( topGen ‘ ( ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) qTop 𝐹 ) ) ) |
40 |
33 37 39
|
syl2anc |
⊢ ( 𝜑 → ( ( topGen ‘ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) ) qTop 𝐹 ) = ( topGen ‘ ( ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) qTop 𝐹 ) ) ) |
41 |
|
eqid |
⊢ ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) = ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) |
42 |
41
|
mopnval |
⊢ ( ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ∈ ( ∞Met ‘ 𝑉 ) → ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) = ( topGen ‘ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) ) ) |
43 |
14 42
|
syl |
⊢ ( 𝜑 → ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) = ( topGen ‘ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) ) ) |
44 |
43
|
oveq1d |
⊢ ( 𝜑 → ( ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) qTop 𝐹 ) = ( ( topGen ‘ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) ) qTop 𝐹 ) ) |
45 |
|
eqid |
⊢ ( MetOpen ‘ ( dist ‘ 𝑈 ) ) = ( MetOpen ‘ ( dist ‘ 𝑈 ) ) |
46 |
45
|
mopnval |
⊢ ( ( dist ‘ 𝑈 ) ∈ ( ∞Met ‘ 𝐵 ) → ( MetOpen ‘ ( dist ‘ 𝑈 ) ) = ( topGen ‘ ran ( ball ‘ ( dist ‘ 𝑈 ) ) ) ) |
47 |
15 46
|
syl |
⊢ ( 𝜑 → ( MetOpen ‘ ( dist ‘ 𝑈 ) ) = ( topGen ‘ ran ( ball ‘ ( dist ‘ 𝑈 ) ) ) ) |
48 |
|
xmetf |
⊢ ( ( dist ‘ 𝑈 ) ∈ ( ∞Met ‘ ( Base ‘ 𝑈 ) ) → ( dist ‘ 𝑈 ) : ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) ⟶ ℝ* ) |
49 |
20 48
|
syl |
⊢ ( 𝜑 → ( dist ‘ 𝑈 ) : ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) ⟶ ℝ* ) |
50 |
|
ffn |
⊢ ( ( dist ‘ 𝑈 ) : ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) ⟶ ℝ* → ( dist ‘ 𝑈 ) Fn ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) ) |
51 |
|
fnresdm |
⊢ ( ( dist ‘ 𝑈 ) Fn ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) → ( ( dist ‘ 𝑈 ) ↾ ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) ) = ( dist ‘ 𝑈 ) ) |
52 |
49 50 51
|
3syl |
⊢ ( 𝜑 → ( ( dist ‘ 𝑈 ) ↾ ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) ) = ( dist ‘ 𝑈 ) ) |
53 |
52
|
fveq2d |
⊢ ( 𝜑 → ( MetOpen ‘ ( ( dist ‘ 𝑈 ) ↾ ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) ) ) = ( MetOpen ‘ ( dist ‘ 𝑈 ) ) ) |
54 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ* ) ) → 𝐹 : 𝑉 –1-1-onto→ 𝐵 ) |
55 |
|
f1of1 |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝐵 → 𝐹 : 𝑉 –1-1→ 𝐵 ) |
56 |
54 55
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ* ) ) → 𝐹 : 𝑉 –1-1→ 𝐵 ) |
57 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ 𝑥 ) ⊆ dom 𝐹 |
58 |
|
f1odm |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝐵 → dom 𝐹 = 𝑉 ) |
59 |
54 58
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ* ) ) → dom 𝐹 = 𝑉 ) |
60 |
57 59
|
sseqtrid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ* ) ) → ( ◡ 𝐹 “ 𝑥 ) ⊆ 𝑉 ) |
61 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ* ) ) → ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ∈ ( ∞Met ‘ 𝑉 ) ) |
62 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ* ) ) → 𝑦 ∈ 𝑉 ) |
63 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ* ) ) → 𝑟 ∈ ℝ* ) |
64 |
|
blssm |
⊢ ( ( ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ* ) → ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) 𝑟 ) ⊆ 𝑉 ) |
65 |
61 62 63 64
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ* ) ) → ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) 𝑟 ) ⊆ 𝑉 ) |
66 |
|
f1imaeq |
⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝐵 ∧ ( ( ◡ 𝐹 “ 𝑥 ) ⊆ 𝑉 ∧ ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) 𝑟 ) ⊆ 𝑉 ) ) → ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) = ( 𝐹 “ ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) 𝑟 ) ) ↔ ( ◡ 𝐹 “ 𝑥 ) = ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) 𝑟 ) ) ) |
67 |
56 60 65 66
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ* ) ) → ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) = ( 𝐹 “ ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) 𝑟 ) ) ↔ ( ◡ 𝐹 “ 𝑥 ) = ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) 𝑟 ) ) ) |
68 |
54 16
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ* ) ) → 𝐹 : 𝑉 –onto→ 𝐵 ) |
69 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ* ) ) → 𝑥 ⊆ 𝐵 ) |
70 |
|
foimacnv |
⊢ ( ( 𝐹 : 𝑉 –onto→ 𝐵 ∧ 𝑥 ⊆ 𝐵 ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) = 𝑥 ) |
71 |
68 69 70
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ* ) ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) = 𝑥 ) |
72 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ* ) ) → 𝑈 = ( 𝐹 “s 𝑅 ) ) |
73 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ* ) ) → 𝑉 = ( Base ‘ 𝑅 ) ) |
74 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ* ) ) → 𝑅 ∈ ∞MetSp ) |
75 |
72 73 54 74 5 6 61 62 63
|
imasf1obl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ* ) ) → ( ( 𝐹 ‘ 𝑦 ) ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) = ( 𝐹 “ ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) 𝑟 ) ) ) |
76 |
75
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ* ) ) → ( 𝐹 “ ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) 𝑟 ) ) = ( ( 𝐹 ‘ 𝑦 ) ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ) |
77 |
71 76
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ* ) ) → ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) = ( 𝐹 “ ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) 𝑟 ) ) ↔ 𝑥 = ( ( 𝐹 ‘ 𝑦 ) ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ) ) |
78 |
67 77
|
bitr3d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ* ) ) → ( ( ◡ 𝐹 “ 𝑥 ) = ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) 𝑟 ) ↔ 𝑥 = ( ( 𝐹 ‘ 𝑦 ) ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ) ) |
79 |
78
|
2rexbidva |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) → ( ∃ 𝑦 ∈ 𝑉 ∃ 𝑟 ∈ ℝ* ( ◡ 𝐹 “ 𝑥 ) = ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) 𝑟 ) ↔ ∃ 𝑦 ∈ 𝑉 ∃ 𝑟 ∈ ℝ* 𝑥 = ( ( 𝐹 ‘ 𝑦 ) ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ) ) |
80 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) → 𝐹 : 𝑉 –1-1-onto→ 𝐵 ) |
81 |
|
f1ofn |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝐵 → 𝐹 Fn 𝑉 ) |
82 |
|
oveq1 |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑦 ) → ( 𝑧 ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) = ( ( 𝐹 ‘ 𝑦 ) ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ) |
83 |
82
|
eqeq2d |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑦 ) → ( 𝑥 = ( 𝑧 ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ↔ 𝑥 = ( ( 𝐹 ‘ 𝑦 ) ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ) ) |
84 |
83
|
rexbidv |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑦 ) → ( ∃ 𝑟 ∈ ℝ* 𝑥 = ( 𝑧 ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ↔ ∃ 𝑟 ∈ ℝ* 𝑥 = ( ( 𝐹 ‘ 𝑦 ) ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ) ) |
85 |
84
|
rexrn |
⊢ ( 𝐹 Fn 𝑉 → ( ∃ 𝑧 ∈ ran 𝐹 ∃ 𝑟 ∈ ℝ* 𝑥 = ( 𝑧 ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ↔ ∃ 𝑦 ∈ 𝑉 ∃ 𝑟 ∈ ℝ* 𝑥 = ( ( 𝐹 ‘ 𝑦 ) ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ) ) |
86 |
80 81 85
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) → ( ∃ 𝑧 ∈ ran 𝐹 ∃ 𝑟 ∈ ℝ* 𝑥 = ( 𝑧 ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ↔ ∃ 𝑦 ∈ 𝑉 ∃ 𝑟 ∈ ℝ* 𝑥 = ( ( 𝐹 ‘ 𝑦 ) ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ) ) |
87 |
|
forn |
⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → ran 𝐹 = 𝐵 ) |
88 |
80 16 87
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) → ran 𝐹 = 𝐵 ) |
89 |
88
|
rexeqdv |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) → ( ∃ 𝑧 ∈ ran 𝐹 ∃ 𝑟 ∈ ℝ* 𝑥 = ( 𝑧 ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ↔ ∃ 𝑧 ∈ 𝐵 ∃ 𝑟 ∈ ℝ* 𝑥 = ( 𝑧 ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ) ) |
90 |
79 86 89
|
3bitr2d |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) → ( ∃ 𝑦 ∈ 𝑉 ∃ 𝑟 ∈ ℝ* ( ◡ 𝐹 “ 𝑥 ) = ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) 𝑟 ) ↔ ∃ 𝑧 ∈ 𝐵 ∃ 𝑟 ∈ ℝ* 𝑥 = ( 𝑧 ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ) ) |
91 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) → ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ∈ ( ∞Met ‘ 𝑉 ) ) |
92 |
|
blrn |
⊢ ( ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ∈ ( ∞Met ‘ 𝑉 ) → ( ( ◡ 𝐹 “ 𝑥 ) ∈ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) ↔ ∃ 𝑦 ∈ 𝑉 ∃ 𝑟 ∈ ℝ* ( ◡ 𝐹 “ 𝑥 ) = ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) 𝑟 ) ) ) |
93 |
91 92
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) → ( ( ◡ 𝐹 “ 𝑥 ) ∈ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) ↔ ∃ 𝑦 ∈ 𝑉 ∃ 𝑟 ∈ ℝ* ( ◡ 𝐹 “ 𝑥 ) = ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) 𝑟 ) ) ) |
94 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) → ( dist ‘ 𝑈 ) ∈ ( ∞Met ‘ 𝐵 ) ) |
95 |
|
blrn |
⊢ ( ( dist ‘ 𝑈 ) ∈ ( ∞Met ‘ 𝐵 ) → ( 𝑥 ∈ ran ( ball ‘ ( dist ‘ 𝑈 ) ) ↔ ∃ 𝑧 ∈ 𝐵 ∃ 𝑟 ∈ ℝ* 𝑥 = ( 𝑧 ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ) ) |
96 |
94 95
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) → ( 𝑥 ∈ ran ( ball ‘ ( dist ‘ 𝑈 ) ) ↔ ∃ 𝑧 ∈ 𝐵 ∃ 𝑟 ∈ ℝ* 𝑥 = ( 𝑧 ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ) ) |
97 |
90 93 96
|
3bitr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) → ( ( ◡ 𝐹 “ 𝑥 ) ∈ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) ↔ 𝑥 ∈ ran ( ball ‘ ( dist ‘ 𝑈 ) ) ) ) |
98 |
97
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑥 ⊆ 𝐵 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) ) ↔ ( 𝑥 ⊆ 𝐵 ∧ 𝑥 ∈ ran ( ball ‘ ( dist ‘ 𝑈 ) ) ) ) ) |
99 |
|
f1ofo |
⊢ ( 𝐹 : ∪ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) –1-1-onto→ 𝐵 → 𝐹 : ∪ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) –onto→ 𝐵 ) |
100 |
37 99
|
syl |
⊢ ( 𝜑 → 𝐹 : ∪ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) –onto→ 𝐵 ) |
101 |
38
|
elqtop2 |
⊢ ( ( ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) ∈ TopBases ∧ 𝐹 : ∪ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) –onto→ 𝐵 ) → ( 𝑥 ∈ ( ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) qTop 𝐹 ) ↔ ( 𝑥 ⊆ 𝐵 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) ) ) ) |
102 |
33 100 101
|
syl2anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) qTop 𝐹 ) ↔ ( 𝑥 ⊆ 𝐵 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) ) ) ) |
103 |
|
blf |
⊢ ( ( dist ‘ 𝑈 ) ∈ ( ∞Met ‘ 𝐵 ) → ( ball ‘ ( dist ‘ 𝑈 ) ) : ( 𝐵 × ℝ* ) ⟶ 𝒫 𝐵 ) |
104 |
|
frn |
⊢ ( ( ball ‘ ( dist ‘ 𝑈 ) ) : ( 𝐵 × ℝ* ) ⟶ 𝒫 𝐵 → ran ( ball ‘ ( dist ‘ 𝑈 ) ) ⊆ 𝒫 𝐵 ) |
105 |
15 103 104
|
3syl |
⊢ ( 𝜑 → ran ( ball ‘ ( dist ‘ 𝑈 ) ) ⊆ 𝒫 𝐵 ) |
106 |
105
|
sseld |
⊢ ( 𝜑 → ( 𝑥 ∈ ran ( ball ‘ ( dist ‘ 𝑈 ) ) → 𝑥 ∈ 𝒫 𝐵 ) ) |
107 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 𝐵 → 𝑥 ⊆ 𝐵 ) |
108 |
106 107
|
syl6 |
⊢ ( 𝜑 → ( 𝑥 ∈ ran ( ball ‘ ( dist ‘ 𝑈 ) ) → 𝑥 ⊆ 𝐵 ) ) |
109 |
108
|
pm4.71rd |
⊢ ( 𝜑 → ( 𝑥 ∈ ran ( ball ‘ ( dist ‘ 𝑈 ) ) ↔ ( 𝑥 ⊆ 𝐵 ∧ 𝑥 ∈ ran ( ball ‘ ( dist ‘ 𝑈 ) ) ) ) ) |
110 |
98 102 109
|
3bitr4d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) qTop 𝐹 ) ↔ 𝑥 ∈ ran ( ball ‘ ( dist ‘ 𝑈 ) ) ) ) |
111 |
110
|
eqrdv |
⊢ ( 𝜑 → ( ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) qTop 𝐹 ) = ran ( ball ‘ ( dist ‘ 𝑈 ) ) ) |
112 |
111
|
fveq2d |
⊢ ( 𝜑 → ( topGen ‘ ( ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) qTop 𝐹 ) ) = ( topGen ‘ ran ( ball ‘ ( dist ‘ 𝑈 ) ) ) ) |
113 |
47 53 112
|
3eqtr4d |
⊢ ( 𝜑 → ( MetOpen ‘ ( ( dist ‘ 𝑈 ) ↾ ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) ) ) = ( topGen ‘ ( ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) qTop 𝐹 ) ) ) |
114 |
40 44 113
|
3eqtr4d |
⊢ ( 𝜑 → ( ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) qTop 𝐹 ) = ( MetOpen ‘ ( ( dist ‘ 𝑈 ) ↾ ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) ) ) ) |
115 |
26 31 114
|
3eqtrd |
⊢ ( 𝜑 → ( TopOpen ‘ 𝑈 ) = ( MetOpen ‘ ( ( dist ‘ 𝑈 ) ↾ ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) ) ) ) |
116 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
117 |
|
eqid |
⊢ ( ( dist ‘ 𝑈 ) ↾ ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) ) = ( ( dist ‘ 𝑈 ) ↾ ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) ) |
118 |
25 116 117
|
isxms2 |
⊢ ( 𝑈 ∈ ∞MetSp ↔ ( ( ( dist ‘ 𝑈 ) ↾ ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑈 ) ) ∧ ( TopOpen ‘ 𝑈 ) = ( MetOpen ‘ ( ( dist ‘ 𝑈 ) ↾ ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) ) ) ) ) |
119 |
23 115 118
|
sylanbrc |
⊢ ( 𝜑 → 𝑈 ∈ ∞MetSp ) |