Metamath Proof Explorer


Theorem imasghm

Description: Given a function F with homomorphic properties, build the image of a group. (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses imasmhm.b 𝐵 = ( Base ‘ 𝑊 )
imasmhm.f ( 𝜑𝐹 : 𝐵𝐶 )
imasmhm.1 + = ( +g𝑊 )
imasmhm.2 ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ∧ ( 𝑝𝐵𝑞𝐵 ) ) → ( ( ( 𝐹𝑎 ) = ( 𝐹𝑝 ) ∧ ( 𝐹𝑏 ) = ( 𝐹𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ) )
imasghm.w ( 𝜑𝑊 ∈ Grp )
Assertion imasghm ( 𝜑 → ( ( 𝐹s 𝑊 ) ∈ Grp ∧ 𝐹 ∈ ( 𝑊 GrpHom ( 𝐹s 𝑊 ) ) ) )

Proof

Step Hyp Ref Expression
1 imasmhm.b 𝐵 = ( Base ‘ 𝑊 )
2 imasmhm.f ( 𝜑𝐹 : 𝐵𝐶 )
3 imasmhm.1 + = ( +g𝑊 )
4 imasmhm.2 ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ∧ ( 𝑝𝐵𝑞𝐵 ) ) → ( ( ( 𝐹𝑎 ) = ( 𝐹𝑝 ) ∧ ( 𝐹𝑏 ) = ( 𝐹𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ) )
5 imasghm.w ( 𝜑𝑊 ∈ Grp )
6 eqidd ( 𝜑 → ( 𝐹s 𝑊 ) = ( 𝐹s 𝑊 ) )
7 1 a1i ( 𝜑𝐵 = ( Base ‘ 𝑊 ) )
8 3 a1i ( 𝜑+ = ( +g𝑊 ) )
9 fimadmfo ( 𝐹 : 𝐵𝐶𝐹 : 𝐵onto→ ( 𝐹𝐵 ) )
10 2 9 syl ( 𝜑𝐹 : 𝐵onto→ ( 𝐹𝐵 ) )
11 eqid ( 0g𝑊 ) = ( 0g𝑊 )
12 6 7 8 10 4 5 11 imasgrp ( 𝜑 → ( ( 𝐹s 𝑊 ) ∈ Grp ∧ ( 𝐹 ‘ ( 0g𝑊 ) ) = ( 0g ‘ ( 𝐹s 𝑊 ) ) ) )
13 12 simpld ( 𝜑 → ( 𝐹s 𝑊 ) ∈ Grp )
14 eqid ( Base ‘ ( 𝐹s 𝑊 ) ) = ( Base ‘ ( 𝐹s 𝑊 ) )
15 eqid ( +g ‘ ( 𝐹s 𝑊 ) ) = ( +g ‘ ( 𝐹s 𝑊 ) )
16 fof ( 𝐹 : 𝐵onto→ ( 𝐹𝐵 ) → 𝐹 : 𝐵 ⟶ ( 𝐹𝐵 ) )
17 10 16 syl ( 𝜑𝐹 : 𝐵 ⟶ ( 𝐹𝐵 ) )
18 6 7 10 5 imasbas ( 𝜑 → ( 𝐹𝐵 ) = ( Base ‘ ( 𝐹s 𝑊 ) ) )
19 18 feq3d ( 𝜑 → ( 𝐹 : 𝐵 ⟶ ( 𝐹𝐵 ) ↔ 𝐹 : 𝐵 ⟶ ( Base ‘ ( 𝐹s 𝑊 ) ) ) )
20 17 19 mpbid ( 𝜑𝐹 : 𝐵 ⟶ ( Base ‘ ( 𝐹s 𝑊 ) ) )
21 10 4 6 7 5 3 15 imasaddval ( ( 𝜑𝑥𝐵𝑦𝐵 ) → ( ( 𝐹𝑥 ) ( +g ‘ ( 𝐹s 𝑊 ) ) ( 𝐹𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) )
22 21 3expb ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( ( 𝐹𝑥 ) ( +g ‘ ( 𝐹s 𝑊 ) ) ( 𝐹𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) )
23 22 eqcomd ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹𝑥 ) ( +g ‘ ( 𝐹s 𝑊 ) ) ( 𝐹𝑦 ) ) )
24 1 14 3 15 5 13 20 23 isghmd ( 𝜑𝐹 ∈ ( 𝑊 GrpHom ( 𝐹s 𝑊 ) ) )
25 13 24 jca ( 𝜑 → ( ( 𝐹s 𝑊 ) ∈ Grp ∧ 𝐹 ∈ ( 𝑊 GrpHom ( 𝐹s 𝑊 ) ) ) )