Step |
Hyp |
Ref |
Expression |
1 |
|
imasgrp.u |
⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) |
2 |
|
imasgrp.v |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) |
3 |
|
imasgrp.p |
⊢ ( 𝜑 → + = ( +g ‘ 𝑅 ) ) |
4 |
|
imasgrp.f |
⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) |
5 |
|
imasgrp.e |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ) ) |
6 |
|
imasgrp.r |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
7 |
|
imasgrp.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
8 |
6
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → 𝑅 ∈ Grp ) |
9 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → 𝑥 ∈ 𝑉 ) |
10 |
2
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → 𝑉 = ( Base ‘ 𝑅 ) ) |
11 |
9 10
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
12 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → 𝑦 ∈ 𝑉 ) |
13 |
12 10
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
14 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
15 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
16 |
14 15
|
grpcl |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
17 |
8 11 13 16
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
18 |
3
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → + = ( +g ‘ 𝑅 ) ) |
19 |
18
|
oveqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 + 𝑦 ) = ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) |
20 |
17 19 10
|
3eltr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 + 𝑦 ) ∈ 𝑉 ) |
21 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑅 ∈ Grp ) |
22 |
11
|
3adant3r3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
23 |
13
|
3adant3r3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
24 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑧 ∈ 𝑉 ) |
25 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑉 = ( Base ‘ 𝑅 ) ) |
26 |
24 25
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑧 ∈ ( Base ‘ 𝑅 ) ) |
27 |
14 15
|
grpass |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) ) |
28 |
21 22 23 26 27
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) ) |
29 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → + = ( +g ‘ 𝑅 ) ) |
30 |
19
|
3adant3r3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) |
31 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑧 = 𝑧 ) |
32 |
29 30 31
|
oveq123d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ) |
33 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑥 = 𝑥 ) |
34 |
29
|
oveqd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑦 + 𝑧 ) = ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) |
35 |
29 33 34
|
oveq123d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑥 + ( 𝑦 + 𝑧 ) ) = ( 𝑥 ( +g ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) ) |
36 |
28 32 35
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
37 |
36
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝐹 ‘ ( ( 𝑥 + 𝑦 ) + 𝑧 ) ) = ( 𝐹 ‘ ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) ) |
38 |
14 7
|
grpidcl |
⊢ ( 𝑅 ∈ Grp → 0 ∈ ( Base ‘ 𝑅 ) ) |
39 |
6 38
|
syl |
⊢ ( 𝜑 → 0 ∈ ( Base ‘ 𝑅 ) ) |
40 |
39 2
|
eleqtrrd |
⊢ ( 𝜑 → 0 ∈ 𝑉 ) |
41 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → + = ( +g ‘ 𝑅 ) ) |
42 |
41
|
oveqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 0 + 𝑥 ) = ( 0 ( +g ‘ 𝑅 ) 𝑥 ) ) |
43 |
2
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑉 ↔ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ) |
44 |
43
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
45 |
14 15 7
|
grplid |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 0 ( +g ‘ 𝑅 ) 𝑥 ) = 𝑥 ) |
46 |
6 44 45
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 0 ( +g ‘ 𝑅 ) 𝑥 ) = 𝑥 ) |
47 |
42 46
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 0 + 𝑥 ) = 𝑥 ) |
48 |
47
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝐹 ‘ ( 0 + 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
49 |
|
eqid |
⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) |
50 |
14 49
|
grpinvcl |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
51 |
6 44 50
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
52 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝑉 = ( Base ‘ 𝑅 ) ) |
53 |
51 52
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝑉 ) |
54 |
41
|
oveqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) + 𝑥 ) = ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ( +g ‘ 𝑅 ) 𝑥 ) ) |
55 |
14 15 7 49
|
grplinv |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ( +g ‘ 𝑅 ) 𝑥 ) = 0 ) |
56 |
6 44 55
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ( +g ‘ 𝑅 ) 𝑥 ) = 0 ) |
57 |
54 56
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) + 𝑥 ) = 0 ) |
58 |
57
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝐹 ‘ ( ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) + 𝑥 ) ) = ( 𝐹 ‘ 0 ) ) |
59 |
1 2 3 4 5 6 20 37 40 48 53 58
|
imasgrp2 |
⊢ ( 𝜑 → ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑈 ) ) ) |