| Step | Hyp | Ref | Expression | 
						
							| 1 |  | imasgrp.u | ⊢ ( 𝜑  →  𝑈  =  ( 𝐹  “s  𝑅 ) ) | 
						
							| 2 |  | imasgrp.v | ⊢ ( 𝜑  →  𝑉  =  ( Base ‘ 𝑅 ) ) | 
						
							| 3 |  | imasgrp.p | ⊢ ( 𝜑  →   +   =  ( +g ‘ 𝑅 ) ) | 
						
							| 4 |  | imasgrp.f | ⊢ ( 𝜑  →  𝐹 : 𝑉 –onto→ 𝐵 ) | 
						
							| 5 |  | imasgrp.e | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  ∧  ( 𝑝  ∈  𝑉  ∧  𝑞  ∈  𝑉 ) )  →  ( ( ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑝 )  ∧  ( 𝐹 ‘ 𝑏 )  =  ( 𝐹 ‘ 𝑞 ) )  →  ( 𝐹 ‘ ( 𝑎  +  𝑏 ) )  =  ( 𝐹 ‘ ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 6 |  | imasgrp2.r | ⊢ ( 𝜑  →  𝑅  ∈  𝑊 ) | 
						
							| 7 |  | imasgrp2.1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 )  →  ( 𝑥  +  𝑦 )  ∈  𝑉 ) | 
						
							| 8 |  | imasgrp2.2 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( 𝐹 ‘ ( ( 𝑥  +  𝑦 )  +  𝑧 ) )  =  ( 𝐹 ‘ ( 𝑥  +  ( 𝑦  +  𝑧 ) ) ) ) | 
						
							| 9 |  | imasgrp2.3 | ⊢ ( 𝜑  →   0   ∈  𝑉 ) | 
						
							| 10 |  | imasgrp2.4 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  ( 𝐹 ‘ (  0   +  𝑥 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 11 |  | imasgrp2.5 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  𝑁  ∈  𝑉 ) | 
						
							| 12 |  | imasgrp2.6 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  ( 𝐹 ‘ ( 𝑁  +  𝑥 ) )  =  ( 𝐹 ‘  0  ) ) | 
						
							| 13 | 1 2 4 6 | imasbas | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝑈 ) ) | 
						
							| 14 |  | eqidd | ⊢ ( 𝜑  →  ( +g ‘ 𝑈 )  =  ( +g ‘ 𝑈 ) ) | 
						
							| 15 | 3 | oveqd | ⊢ ( 𝜑  →  ( 𝑎  +  𝑏 )  =  ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) | 
						
							| 16 | 15 | fveq2d | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 𝑎  +  𝑏 ) )  =  ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) ) | 
						
							| 17 | 3 | oveqd | ⊢ ( 𝜑  →  ( 𝑝  +  𝑞 )  =  ( 𝑝 ( +g ‘ 𝑅 ) 𝑞 ) ) | 
						
							| 18 | 17 | fveq2d | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 𝑝  +  𝑞 ) )  =  ( 𝐹 ‘ ( 𝑝 ( +g ‘ 𝑅 ) 𝑞 ) ) ) | 
						
							| 19 | 16 18 | eqeq12d | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ ( 𝑎  +  𝑏 ) )  =  ( 𝐹 ‘ ( 𝑝  +  𝑞 ) )  ↔  ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) )  =  ( 𝐹 ‘ ( 𝑝 ( +g ‘ 𝑅 ) 𝑞 ) ) ) ) | 
						
							| 20 | 19 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  ∧  ( 𝑝  ∈  𝑉  ∧  𝑞  ∈  𝑉 ) )  →  ( ( 𝐹 ‘ ( 𝑎  +  𝑏 ) )  =  ( 𝐹 ‘ ( 𝑝  +  𝑞 ) )  ↔  ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) )  =  ( 𝐹 ‘ ( 𝑝 ( +g ‘ 𝑅 ) 𝑞 ) ) ) ) | 
						
							| 21 | 5 20 | sylibd | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  ∧  ( 𝑝  ∈  𝑉  ∧  𝑞  ∈  𝑉 ) )  →  ( ( ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑝 )  ∧  ( 𝐹 ‘ 𝑏 )  =  ( 𝐹 ‘ 𝑞 ) )  →  ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) )  =  ( 𝐹 ‘ ( 𝑝 ( +g ‘ 𝑅 ) 𝑞 ) ) ) ) | 
						
							| 22 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 23 |  | eqid | ⊢ ( +g ‘ 𝑈 )  =  ( +g ‘ 𝑈 ) | 
						
							| 24 | 17 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝑉  ∧  𝑞  ∈  𝑉 ) )  →  ( 𝑝  +  𝑞 )  =  ( 𝑝 ( +g ‘ 𝑅 ) 𝑞 ) ) | 
						
							| 25 | 7 | 3expb | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 ) )  →  ( 𝑥  +  𝑦 )  ∈  𝑉 ) | 
						
							| 26 | 25 | caovclg | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝑉  ∧  𝑞  ∈  𝑉 ) )  →  ( 𝑝  +  𝑞 )  ∈  𝑉 ) | 
						
							| 27 | 24 26 | eqeltrrd | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝑉  ∧  𝑞  ∈  𝑉 ) )  →  ( 𝑝 ( +g ‘ 𝑅 ) 𝑞 )  ∈  𝑉 ) | 
						
							| 28 | 4 21 1 2 6 22 23 27 | imasaddf | ⊢ ( 𝜑  →  ( +g ‘ 𝑈 ) : ( 𝐵  ×  𝐵 ) ⟶ 𝐵 ) | 
						
							| 29 |  | fovcdm | ⊢ ( ( ( +g ‘ 𝑈 ) : ( 𝐵  ×  𝐵 ) ⟶ 𝐵  ∧  𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵 )  →  ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 )  ∈  𝐵 ) | 
						
							| 30 | 28 29 | syl3an1 | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵 )  →  ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 )  ∈  𝐵 ) | 
						
							| 31 |  | forn | ⊢ ( 𝐹 : 𝑉 –onto→ 𝐵  →  ran  𝐹  =  𝐵 ) | 
						
							| 32 | 4 31 | syl | ⊢ ( 𝜑  →  ran  𝐹  =  𝐵 ) | 
						
							| 33 | 32 | eleq2d | ⊢ ( 𝜑  →  ( 𝑢  ∈  ran  𝐹  ↔  𝑢  ∈  𝐵 ) ) | 
						
							| 34 | 32 | eleq2d | ⊢ ( 𝜑  →  ( 𝑣  ∈  ran  𝐹  ↔  𝑣  ∈  𝐵 ) ) | 
						
							| 35 | 32 | eleq2d | ⊢ ( 𝜑  →  ( 𝑤  ∈  ran  𝐹  ↔  𝑤  ∈  𝐵 ) ) | 
						
							| 36 | 33 34 35 | 3anbi123d | ⊢ ( 𝜑  →  ( ( 𝑢  ∈  ran  𝐹  ∧  𝑣  ∈  ran  𝐹  ∧  𝑤  ∈  ran  𝐹 )  ↔  ( 𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) ) ) | 
						
							| 37 |  | fofn | ⊢ ( 𝐹 : 𝑉 –onto→ 𝐵  →  𝐹  Fn  𝑉 ) | 
						
							| 38 | 4 37 | syl | ⊢ ( 𝜑  →  𝐹  Fn  𝑉 ) | 
						
							| 39 |  | fvelrnb | ⊢ ( 𝐹  Fn  𝑉  →  ( 𝑢  ∈  ran  𝐹  ↔  ∃ 𝑥  ∈  𝑉 ( 𝐹 ‘ 𝑥 )  =  𝑢 ) ) | 
						
							| 40 |  | fvelrnb | ⊢ ( 𝐹  Fn  𝑉  →  ( 𝑣  ∈  ran  𝐹  ↔  ∃ 𝑦  ∈  𝑉 ( 𝐹 ‘ 𝑦 )  =  𝑣 ) ) | 
						
							| 41 |  | fvelrnb | ⊢ ( 𝐹  Fn  𝑉  →  ( 𝑤  ∈  ran  𝐹  ↔  ∃ 𝑧  ∈  𝑉 ( 𝐹 ‘ 𝑧 )  =  𝑤 ) ) | 
						
							| 42 | 39 40 41 | 3anbi123d | ⊢ ( 𝐹  Fn  𝑉  →  ( ( 𝑢  ∈  ran  𝐹  ∧  𝑣  ∈  ran  𝐹  ∧  𝑤  ∈  ran  𝐹 )  ↔  ( ∃ 𝑥  ∈  𝑉 ( 𝐹 ‘ 𝑥 )  =  𝑢  ∧  ∃ 𝑦  ∈  𝑉 ( 𝐹 ‘ 𝑦 )  =  𝑣  ∧  ∃ 𝑧  ∈  𝑉 ( 𝐹 ‘ 𝑧 )  =  𝑤 ) ) ) | 
						
							| 43 | 38 42 | syl | ⊢ ( 𝜑  →  ( ( 𝑢  ∈  ran  𝐹  ∧  𝑣  ∈  ran  𝐹  ∧  𝑤  ∈  ran  𝐹 )  ↔  ( ∃ 𝑥  ∈  𝑉 ( 𝐹 ‘ 𝑥 )  =  𝑢  ∧  ∃ 𝑦  ∈  𝑉 ( 𝐹 ‘ 𝑦 )  =  𝑣  ∧  ∃ 𝑧  ∈  𝑉 ( 𝐹 ‘ 𝑧 )  =  𝑤 ) ) ) | 
						
							| 44 | 36 43 | bitr3d | ⊢ ( 𝜑  →  ( ( 𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  ↔  ( ∃ 𝑥  ∈  𝑉 ( 𝐹 ‘ 𝑥 )  =  𝑢  ∧  ∃ 𝑦  ∈  𝑉 ( 𝐹 ‘ 𝑦 )  =  𝑣  ∧  ∃ 𝑧  ∈  𝑉 ( 𝐹 ‘ 𝑧 )  =  𝑤 ) ) ) | 
						
							| 45 |  | 3reeanv | ⊢ ( ∃ 𝑥  ∈  𝑉 ∃ 𝑦  ∈  𝑉 ∃ 𝑧  ∈  𝑉 ( ( 𝐹 ‘ 𝑥 )  =  𝑢  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑣  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑤 )  ↔  ( ∃ 𝑥  ∈  𝑉 ( 𝐹 ‘ 𝑥 )  =  𝑢  ∧  ∃ 𝑦  ∈  𝑉 ( 𝐹 ‘ 𝑦 )  =  𝑣  ∧  ∃ 𝑧  ∈  𝑉 ( 𝐹 ‘ 𝑧 )  =  𝑤 ) ) | 
						
							| 46 | 44 45 | bitr4di | ⊢ ( 𝜑  →  ( ( 𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  ↔  ∃ 𝑥  ∈  𝑉 ∃ 𝑦  ∈  𝑉 ∃ 𝑧  ∈  𝑉 ( ( 𝐹 ‘ 𝑥 )  =  𝑢  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑣  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑤 ) ) ) | 
						
							| 47 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →   +   =  ( +g ‘ 𝑅 ) ) | 
						
							| 48 | 47 | oveqd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( ( 𝑥  +  𝑦 )  +  𝑧 )  =  ( ( 𝑥  +  𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ) | 
						
							| 49 | 48 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( 𝐹 ‘ ( ( 𝑥  +  𝑦 )  +  𝑧 ) )  =  ( 𝐹 ‘ ( ( 𝑥  +  𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ) ) | 
						
							| 50 | 47 | oveqd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( 𝑥  +  ( 𝑦  +  𝑧 ) )  =  ( 𝑥 ( +g ‘ 𝑅 ) ( 𝑦  +  𝑧 ) ) ) | 
						
							| 51 | 50 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( 𝐹 ‘ ( 𝑥  +  ( 𝑦  +  𝑧 ) ) )  =  ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) ( 𝑦  +  𝑧 ) ) ) ) | 
						
							| 52 | 8 49 51 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( 𝐹 ‘ ( ( 𝑥  +  𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) )  =  ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) ( 𝑦  +  𝑧 ) ) ) ) | 
						
							| 53 |  | simpl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  𝜑 ) | 
						
							| 54 | 7 | 3adant3r3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( 𝑥  +  𝑦 )  ∈  𝑉 ) | 
						
							| 55 |  | simpr3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  𝑧  ∈  𝑉 ) | 
						
							| 56 | 4 21 1 2 6 22 23 | imasaddval | ⊢ ( ( 𝜑  ∧  ( 𝑥  +  𝑦 )  ∈  𝑉  ∧  𝑧  ∈  𝑉 )  →  ( ( 𝐹 ‘ ( 𝑥  +  𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) )  =  ( 𝐹 ‘ ( ( 𝑥  +  𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ) ) | 
						
							| 57 | 53 54 55 56 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( ( 𝐹 ‘ ( 𝑥  +  𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) )  =  ( 𝐹 ‘ ( ( 𝑥  +  𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ) ) | 
						
							| 58 |  | simpr1 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  𝑥  ∈  𝑉 ) | 
						
							| 59 | 26 | caovclg | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( 𝑦  +  𝑧 )  ∈  𝑉 ) | 
						
							| 60 | 59 | 3adantr1 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( 𝑦  +  𝑧 )  ∈  𝑉 ) | 
						
							| 61 | 4 21 1 2 6 22 23 | imasaddval | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉  ∧  ( 𝑦  +  𝑧 )  ∈  𝑉 )  →  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦  +  𝑧 ) ) )  =  ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) ( 𝑦  +  𝑧 ) ) ) ) | 
						
							| 62 | 53 58 60 61 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦  +  𝑧 ) ) )  =  ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) ( 𝑦  +  𝑧 ) ) ) ) | 
						
							| 63 | 52 57 62 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( ( 𝐹 ‘ ( 𝑥  +  𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦  +  𝑧 ) ) ) ) | 
						
							| 64 | 4 21 1 2 6 22 23 | imasaddval | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 )  →  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) )  =  ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) | 
						
							| 65 | 64 | 3adant3r3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) )  =  ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) | 
						
							| 66 | 47 | oveqd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( 𝑥  +  𝑦 )  =  ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) | 
						
							| 67 | 66 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( 𝐹 ‘ ( 𝑥  +  𝑦 ) )  =  ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) | 
						
							| 68 | 65 67 | eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) )  =  ( 𝐹 ‘ ( 𝑥  +  𝑦 ) ) ) | 
						
							| 69 | 68 | oveq1d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) )  =  ( ( 𝐹 ‘ ( 𝑥  +  𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 70 | 4 21 1 2 6 22 23 | imasaddval | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 )  →  ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) )  =  ( 𝐹 ‘ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) ) | 
						
							| 71 | 70 | 3adant3r1 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) )  =  ( 𝐹 ‘ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) ) | 
						
							| 72 | 47 | oveqd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( 𝑦  +  𝑧 )  =  ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) | 
						
							| 73 | 72 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( 𝐹 ‘ ( 𝑦  +  𝑧 ) )  =  ( 𝐹 ‘ ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) ) | 
						
							| 74 | 71 73 | eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) )  =  ( 𝐹 ‘ ( 𝑦  +  𝑧 ) ) ) | 
						
							| 75 | 74 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦  +  𝑧 ) ) ) ) | 
						
							| 76 | 63 69 75 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) ) | 
						
							| 77 |  | simp1 | ⊢ ( ( ( 𝐹 ‘ 𝑥 )  =  𝑢  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑣  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑤 )  →  ( 𝐹 ‘ 𝑥 )  =  𝑢 ) | 
						
							| 78 |  | simp2 | ⊢ ( ( ( 𝐹 ‘ 𝑥 )  =  𝑢  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑣  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑤 )  →  ( 𝐹 ‘ 𝑦 )  =  𝑣 ) | 
						
							| 79 | 77 78 | oveq12d | ⊢ ( ( ( 𝐹 ‘ 𝑥 )  =  𝑢  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑣  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑤 )  →  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) )  =  ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ) | 
						
							| 80 |  | simp3 | ⊢ ( ( ( 𝐹 ‘ 𝑥 )  =  𝑢  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑣  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑤 )  →  ( 𝐹 ‘ 𝑧 )  =  𝑤 ) | 
						
							| 81 | 79 80 | oveq12d | ⊢ ( ( ( 𝐹 ‘ 𝑥 )  =  𝑢  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑣  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑤 )  →  ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) )  =  ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) 𝑤 ) ) | 
						
							| 82 | 78 80 | oveq12d | ⊢ ( ( ( 𝐹 ‘ 𝑥 )  =  𝑢  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑣  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑤 )  →  ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) )  =  ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) | 
						
							| 83 | 77 82 | oveq12d | ⊢ ( ( ( 𝐹 ‘ 𝑥 )  =  𝑢  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑣  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑤 )  →  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) )  =  ( 𝑢 ( +g ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) ) | 
						
							| 84 | 81 83 | eqeq12d | ⊢ ( ( ( 𝐹 ‘ 𝑥 )  =  𝑢  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑣  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑤 )  →  ( ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) )  ↔  ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) 𝑤 )  =  ( 𝑢 ( +g ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) ) ) | 
						
							| 85 | 76 84 | syl5ibcom | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( ( ( 𝐹 ‘ 𝑥 )  =  𝑢  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑣  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑤 )  →  ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) 𝑤 )  =  ( 𝑢 ( +g ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) ) ) | 
						
							| 86 | 85 | 3exp2 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑉  →  ( 𝑦  ∈  𝑉  →  ( 𝑧  ∈  𝑉  →  ( ( ( 𝐹 ‘ 𝑥 )  =  𝑢  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑣  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑤 )  →  ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) 𝑤 )  =  ( 𝑢 ( +g ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) ) ) ) ) ) | 
						
							| 87 | 86 | imp32 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 ) )  →  ( 𝑧  ∈  𝑉  →  ( ( ( 𝐹 ‘ 𝑥 )  =  𝑢  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑣  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑤 )  →  ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) 𝑤 )  =  ( 𝑢 ( +g ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) ) ) ) | 
						
							| 88 | 87 | rexlimdv | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 ) )  →  ( ∃ 𝑧  ∈  𝑉 ( ( 𝐹 ‘ 𝑥 )  =  𝑢  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑣  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑤 )  →  ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) 𝑤 )  =  ( 𝑢 ( +g ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) ) ) | 
						
							| 89 | 88 | rexlimdvva | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  𝑉 ∃ 𝑦  ∈  𝑉 ∃ 𝑧  ∈  𝑉 ( ( 𝐹 ‘ 𝑥 )  =  𝑢  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑣  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑤 )  →  ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) 𝑤 )  =  ( 𝑢 ( +g ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) ) ) | 
						
							| 90 | 46 89 | sylbid | ⊢ ( 𝜑  →  ( ( 𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  →  ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) 𝑤 )  =  ( 𝑢 ( +g ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) ) ) | 
						
							| 91 | 90 | imp | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) 𝑤 )  =  ( 𝑢 ( +g ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) ) | 
						
							| 92 |  | fof | ⊢ ( 𝐹 : 𝑉 –onto→ 𝐵  →  𝐹 : 𝑉 ⟶ 𝐵 ) | 
						
							| 93 | 4 92 | syl | ⊢ ( 𝜑  →  𝐹 : 𝑉 ⟶ 𝐵 ) | 
						
							| 94 | 93 9 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐹 ‘  0  )  ∈  𝐵 ) | 
						
							| 95 | 38 39 | syl | ⊢ ( 𝜑  →  ( 𝑢  ∈  ran  𝐹  ↔  ∃ 𝑥  ∈  𝑉 ( 𝐹 ‘ 𝑥 )  =  𝑢 ) ) | 
						
							| 96 | 33 95 | bitr3d | ⊢ ( 𝜑  →  ( 𝑢  ∈  𝐵  ↔  ∃ 𝑥  ∈  𝑉 ( 𝐹 ‘ 𝑥 )  =  𝑢 ) ) | 
						
							| 97 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  𝜑 ) | 
						
							| 98 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →   0   ∈  𝑉 ) | 
						
							| 99 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  𝑥  ∈  𝑉 ) | 
						
							| 100 | 4 21 1 2 6 22 23 | imasaddval | ⊢ ( ( 𝜑  ∧   0   ∈  𝑉  ∧  𝑥  ∈  𝑉 )  →  ( ( 𝐹 ‘  0  ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) )  =  ( 𝐹 ‘ (  0  ( +g ‘ 𝑅 ) 𝑥 ) ) ) | 
						
							| 101 | 97 98 99 100 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  ( ( 𝐹 ‘  0  ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) )  =  ( 𝐹 ‘ (  0  ( +g ‘ 𝑅 ) 𝑥 ) ) ) | 
						
							| 102 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →   +   =  ( +g ‘ 𝑅 ) ) | 
						
							| 103 | 102 | oveqd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  (  0   +  𝑥 )  =  (  0  ( +g ‘ 𝑅 ) 𝑥 ) ) | 
						
							| 104 | 103 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  ( 𝐹 ‘ (  0   +  𝑥 ) )  =  ( 𝐹 ‘ (  0  ( +g ‘ 𝑅 ) 𝑥 ) ) ) | 
						
							| 105 | 101 104 10 | 3eqtr2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  ( ( 𝐹 ‘  0  ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 106 |  | oveq2 | ⊢ ( ( 𝐹 ‘ 𝑥 )  =  𝑢  →  ( ( 𝐹 ‘  0  ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) )  =  ( ( 𝐹 ‘  0  ) ( +g ‘ 𝑈 ) 𝑢 ) ) | 
						
							| 107 |  | id | ⊢ ( ( 𝐹 ‘ 𝑥 )  =  𝑢  →  ( 𝐹 ‘ 𝑥 )  =  𝑢 ) | 
						
							| 108 | 106 107 | eqeq12d | ⊢ ( ( 𝐹 ‘ 𝑥 )  =  𝑢  →  ( ( ( 𝐹 ‘  0  ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) )  =  ( 𝐹 ‘ 𝑥 )  ↔  ( ( 𝐹 ‘  0  ) ( +g ‘ 𝑈 ) 𝑢 )  =  𝑢 ) ) | 
						
							| 109 | 105 108 | syl5ibcom | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  ( ( 𝐹 ‘ 𝑥 )  =  𝑢  →  ( ( 𝐹 ‘  0  ) ( +g ‘ 𝑈 ) 𝑢 )  =  𝑢 ) ) | 
						
							| 110 | 109 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  𝑉 ( 𝐹 ‘ 𝑥 )  =  𝑢  →  ( ( 𝐹 ‘  0  ) ( +g ‘ 𝑈 ) 𝑢 )  =  𝑢 ) ) | 
						
							| 111 | 96 110 | sylbid | ⊢ ( 𝜑  →  ( 𝑢  ∈  𝐵  →  ( ( 𝐹 ‘  0  ) ( +g ‘ 𝑈 ) 𝑢 )  =  𝑢 ) ) | 
						
							| 112 | 111 | imp | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝐵 )  →  ( ( 𝐹 ‘  0  ) ( +g ‘ 𝑈 ) 𝑢 )  =  𝑢 ) | 
						
							| 113 | 93 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  𝐹 : 𝑉 ⟶ 𝐵 ) | 
						
							| 114 | 113 11 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  ( 𝐹 ‘ 𝑁 )  ∈  𝐵 ) | 
						
							| 115 | 4 21 1 2 6 22 23 | imasaddval | ⊢ ( ( 𝜑  ∧  𝑁  ∈  𝑉  ∧  𝑥  ∈  𝑉 )  →  ( ( 𝐹 ‘ 𝑁 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) )  =  ( 𝐹 ‘ ( 𝑁 ( +g ‘ 𝑅 ) 𝑥 ) ) ) | 
						
							| 116 | 97 11 99 115 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  ( ( 𝐹 ‘ 𝑁 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) )  =  ( 𝐹 ‘ ( 𝑁 ( +g ‘ 𝑅 ) 𝑥 ) ) ) | 
						
							| 117 | 102 | oveqd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  ( 𝑁  +  𝑥 )  =  ( 𝑁 ( +g ‘ 𝑅 ) 𝑥 ) ) | 
						
							| 118 | 117 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  ( 𝐹 ‘ ( 𝑁  +  𝑥 ) )  =  ( 𝐹 ‘ ( 𝑁 ( +g ‘ 𝑅 ) 𝑥 ) ) ) | 
						
							| 119 | 116 118 12 | 3eqtr2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  ( ( 𝐹 ‘ 𝑁 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) )  =  ( 𝐹 ‘  0  ) ) | 
						
							| 120 |  | oveq1 | ⊢ ( 𝑣  =  ( 𝐹 ‘ 𝑁 )  →  ( 𝑣 ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑁 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 121 | 120 | eqeq1d | ⊢ ( 𝑣  =  ( 𝐹 ‘ 𝑁 )  →  ( ( 𝑣 ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) )  =  ( 𝐹 ‘  0  )  ↔  ( ( 𝐹 ‘ 𝑁 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) )  =  ( 𝐹 ‘  0  ) ) ) | 
						
							| 122 | 121 | rspcev | ⊢ ( ( ( 𝐹 ‘ 𝑁 )  ∈  𝐵  ∧  ( ( 𝐹 ‘ 𝑁 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) )  =  ( 𝐹 ‘  0  ) )  →  ∃ 𝑣  ∈  𝐵 ( 𝑣 ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) )  =  ( 𝐹 ‘  0  ) ) | 
						
							| 123 | 114 119 122 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  ∃ 𝑣  ∈  𝐵 ( 𝑣 ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) )  =  ( 𝐹 ‘  0  ) ) | 
						
							| 124 |  | oveq2 | ⊢ ( ( 𝐹 ‘ 𝑥 )  =  𝑢  →  ( 𝑣 ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) )  =  ( 𝑣 ( +g ‘ 𝑈 ) 𝑢 ) ) | 
						
							| 125 | 124 | eqeq1d | ⊢ ( ( 𝐹 ‘ 𝑥 )  =  𝑢  →  ( ( 𝑣 ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) )  =  ( 𝐹 ‘  0  )  ↔  ( 𝑣 ( +g ‘ 𝑈 ) 𝑢 )  =  ( 𝐹 ‘  0  ) ) ) | 
						
							| 126 | 125 | rexbidv | ⊢ ( ( 𝐹 ‘ 𝑥 )  =  𝑢  →  ( ∃ 𝑣  ∈  𝐵 ( 𝑣 ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) )  =  ( 𝐹 ‘  0  )  ↔  ∃ 𝑣  ∈  𝐵 ( 𝑣 ( +g ‘ 𝑈 ) 𝑢 )  =  ( 𝐹 ‘  0  ) ) ) | 
						
							| 127 | 123 126 | syl5ibcom | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  ( ( 𝐹 ‘ 𝑥 )  =  𝑢  →  ∃ 𝑣  ∈  𝐵 ( 𝑣 ( +g ‘ 𝑈 ) 𝑢 )  =  ( 𝐹 ‘  0  ) ) ) | 
						
							| 128 | 127 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  𝑉 ( 𝐹 ‘ 𝑥 )  =  𝑢  →  ∃ 𝑣  ∈  𝐵 ( 𝑣 ( +g ‘ 𝑈 ) 𝑢 )  =  ( 𝐹 ‘  0  ) ) ) | 
						
							| 129 | 96 128 | sylbid | ⊢ ( 𝜑  →  ( 𝑢  ∈  𝐵  →  ∃ 𝑣  ∈  𝐵 ( 𝑣 ( +g ‘ 𝑈 ) 𝑢 )  =  ( 𝐹 ‘  0  ) ) ) | 
						
							| 130 | 129 | imp | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝐵 )  →  ∃ 𝑣  ∈  𝐵 ( 𝑣 ( +g ‘ 𝑈 ) 𝑢 )  =  ( 𝐹 ‘  0  ) ) | 
						
							| 131 | 13 14 30 91 94 112 130 | isgrpde | ⊢ ( 𝜑  →  𝑈  ∈  Grp ) | 
						
							| 132 | 13 14 94 112 131 | grpidd2 | ⊢ ( 𝜑  →  ( 𝐹 ‘  0  )  =  ( 0g ‘ 𝑈 ) ) | 
						
							| 133 | 131 132 | jca | ⊢ ( 𝜑  →  ( 𝑈  ∈  Grp  ∧  ( 𝐹 ‘  0  )  =  ( 0g ‘ 𝑈 ) ) ) |