Metamath Proof Explorer


Theorem imasless

Description: The order relation defined on an image set is a subset of the base set. (Contributed by Mario Carneiro, 24-Feb-2015)

Ref Expression
Hypotheses imasless.u ( 𝜑𝑈 = ( 𝐹s 𝑅 ) )
imasless.v ( 𝜑𝑉 = ( Base ‘ 𝑅 ) )
imasless.f ( 𝜑𝐹 : 𝑉onto𝐵 )
imasless.r ( 𝜑𝑅𝑍 )
imasless.l = ( le ‘ 𝑈 )
Assertion imasless ( 𝜑 ⊆ ( 𝐵 × 𝐵 ) )

Proof

Step Hyp Ref Expression
1 imasless.u ( 𝜑𝑈 = ( 𝐹s 𝑅 ) )
2 imasless.v ( 𝜑𝑉 = ( Base ‘ 𝑅 ) )
3 imasless.f ( 𝜑𝐹 : 𝑉onto𝐵 )
4 imasless.r ( 𝜑𝑅𝑍 )
5 imasless.l = ( le ‘ 𝑈 )
6 eqid ( le ‘ 𝑅 ) = ( le ‘ 𝑅 )
7 1 2 3 4 6 5 imasle ( 𝜑 = ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ 𝐹 ) )
8 relco Rel ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ 𝐹 )
9 relssdmrn ( Rel ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ 𝐹 ) → ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ 𝐹 ) ⊆ ( dom ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ 𝐹 ) × ran ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ 𝐹 ) ) )
10 8 9 ax-mp ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ 𝐹 ) ⊆ ( dom ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ 𝐹 ) × ran ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ 𝐹 ) )
11 dmco dom ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ 𝐹 ) = ( 𝐹 “ dom ( 𝐹 ∘ ( le ‘ 𝑅 ) ) )
12 fof ( 𝐹 : 𝑉onto𝐵𝐹 : 𝑉𝐵 )
13 frel ( 𝐹 : 𝑉𝐵 → Rel 𝐹 )
14 3 12 13 3syl ( 𝜑 → Rel 𝐹 )
15 dfrel2 ( Rel 𝐹 𝐹 = 𝐹 )
16 14 15 sylib ( 𝜑 𝐹 = 𝐹 )
17 16 imaeq1d ( 𝜑 → ( 𝐹 “ dom ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ) = ( 𝐹 “ dom ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ) )
18 imassrn ( 𝐹 “ dom ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ) ⊆ ran 𝐹
19 forn ( 𝐹 : 𝑉onto𝐵 → ran 𝐹 = 𝐵 )
20 3 19 syl ( 𝜑 → ran 𝐹 = 𝐵 )
21 18 20 sseqtrid ( 𝜑 → ( 𝐹 “ dom ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ) ⊆ 𝐵 )
22 17 21 eqsstrd ( 𝜑 → ( 𝐹 “ dom ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ) ⊆ 𝐵 )
23 11 22 eqsstrid ( 𝜑 → dom ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ 𝐹 ) ⊆ 𝐵 )
24 rncoss ran ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ 𝐹 ) ⊆ ran ( 𝐹 ∘ ( le ‘ 𝑅 ) )
25 rnco2 ran ( 𝐹 ∘ ( le ‘ 𝑅 ) ) = ( 𝐹 “ ran ( le ‘ 𝑅 ) )
26 imassrn ( 𝐹 “ ran ( le ‘ 𝑅 ) ) ⊆ ran 𝐹
27 26 20 sseqtrid ( 𝜑 → ( 𝐹 “ ran ( le ‘ 𝑅 ) ) ⊆ 𝐵 )
28 25 27 eqsstrid ( 𝜑 → ran ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ⊆ 𝐵 )
29 24 28 sstrid ( 𝜑 → ran ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ 𝐹 ) ⊆ 𝐵 )
30 xpss12 ( ( dom ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ 𝐹 ) ⊆ 𝐵 ∧ ran ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ 𝐹 ) ⊆ 𝐵 ) → ( dom ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ 𝐹 ) × ran ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ 𝐹 ) ) ⊆ ( 𝐵 × 𝐵 ) )
31 23 29 30 syl2anc ( 𝜑 → ( dom ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ 𝐹 ) × ran ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ 𝐹 ) ) ⊆ ( 𝐵 × 𝐵 ) )
32 10 31 sstrid ( 𝜑 → ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ 𝐹 ) ⊆ ( 𝐵 × 𝐵 ) )
33 7 32 eqsstrd ( 𝜑 ⊆ ( 𝐵 × 𝐵 ) )