Step |
Hyp |
Ref |
Expression |
1 |
|
imasless.u |
⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) |
2 |
|
imasless.v |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) |
3 |
|
imasless.f |
⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) |
4 |
|
imasless.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) |
5 |
|
imasless.l |
⊢ ≤ = ( le ‘ 𝑈 ) |
6 |
|
eqid |
⊢ ( le ‘ 𝑅 ) = ( le ‘ 𝑅 ) |
7 |
1 2 3 4 6 5
|
imasle |
⊢ ( 𝜑 → ≤ = ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) ) |
8 |
|
relco |
⊢ Rel ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) |
9 |
|
relssdmrn |
⊢ ( Rel ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) → ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) ⊆ ( dom ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) × ran ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) ) ) |
10 |
8 9
|
ax-mp |
⊢ ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) ⊆ ( dom ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) × ran ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) ) |
11 |
|
dmco |
⊢ dom ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) = ( ◡ ◡ 𝐹 “ dom ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ) |
12 |
|
fof |
⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → 𝐹 : 𝑉 ⟶ 𝐵 ) |
13 |
|
frel |
⊢ ( 𝐹 : 𝑉 ⟶ 𝐵 → Rel 𝐹 ) |
14 |
3 12 13
|
3syl |
⊢ ( 𝜑 → Rel 𝐹 ) |
15 |
|
dfrel2 |
⊢ ( Rel 𝐹 ↔ ◡ ◡ 𝐹 = 𝐹 ) |
16 |
14 15
|
sylib |
⊢ ( 𝜑 → ◡ ◡ 𝐹 = 𝐹 ) |
17 |
16
|
imaeq1d |
⊢ ( 𝜑 → ( ◡ ◡ 𝐹 “ dom ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ) = ( 𝐹 “ dom ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ) ) |
18 |
|
imassrn |
⊢ ( 𝐹 “ dom ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ) ⊆ ran 𝐹 |
19 |
|
forn |
⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → ran 𝐹 = 𝐵 ) |
20 |
3 19
|
syl |
⊢ ( 𝜑 → ran 𝐹 = 𝐵 ) |
21 |
18 20
|
sseqtrid |
⊢ ( 𝜑 → ( 𝐹 “ dom ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ) ⊆ 𝐵 ) |
22 |
17 21
|
eqsstrd |
⊢ ( 𝜑 → ( ◡ ◡ 𝐹 “ dom ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ) ⊆ 𝐵 ) |
23 |
11 22
|
eqsstrid |
⊢ ( 𝜑 → dom ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) ⊆ 𝐵 ) |
24 |
|
rncoss |
⊢ ran ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) ⊆ ran ( 𝐹 ∘ ( le ‘ 𝑅 ) ) |
25 |
|
rnco2 |
⊢ ran ( 𝐹 ∘ ( le ‘ 𝑅 ) ) = ( 𝐹 “ ran ( le ‘ 𝑅 ) ) |
26 |
|
imassrn |
⊢ ( 𝐹 “ ran ( le ‘ 𝑅 ) ) ⊆ ran 𝐹 |
27 |
26 20
|
sseqtrid |
⊢ ( 𝜑 → ( 𝐹 “ ran ( le ‘ 𝑅 ) ) ⊆ 𝐵 ) |
28 |
25 27
|
eqsstrid |
⊢ ( 𝜑 → ran ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ⊆ 𝐵 ) |
29 |
24 28
|
sstrid |
⊢ ( 𝜑 → ran ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) ⊆ 𝐵 ) |
30 |
|
xpss12 |
⊢ ( ( dom ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) ⊆ 𝐵 ∧ ran ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) ⊆ 𝐵 ) → ( dom ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) × ran ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) ) ⊆ ( 𝐵 × 𝐵 ) ) |
31 |
23 29 30
|
syl2anc |
⊢ ( 𝜑 → ( dom ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) × ran ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) ) ⊆ ( 𝐵 × 𝐵 ) ) |
32 |
10 31
|
sstrid |
⊢ ( 𝜑 → ( ( 𝐹 ∘ ( le ‘ 𝑅 ) ) ∘ ◡ 𝐹 ) ⊆ ( 𝐵 × 𝐵 ) ) |
33 |
7 32
|
eqsstrd |
⊢ ( 𝜑 → ≤ ⊆ ( 𝐵 × 𝐵 ) ) |