Step |
Hyp |
Ref |
Expression |
1 |
|
imasless.u |
⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) |
2 |
|
imasless.v |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) |
3 |
|
imasless.f |
⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) |
4 |
|
imasless.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) |
5 |
|
imasless.l |
⊢ ≤ = ( le ‘ 𝑈 ) |
6 |
|
imasleval.n |
⊢ 𝑁 = ( le ‘ 𝑅 ) |
7 |
|
imasleval.e |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ) → ( 𝑎 𝑁 𝑏 ↔ 𝑐 𝑁 𝑑 ) ) ) |
8 |
|
fveq2 |
⊢ ( 𝑐 = 𝑋 → ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑋 ) ) |
9 |
8
|
breq1d |
⊢ ( 𝑐 = 𝑋 → ( ( 𝐹 ‘ 𝑐 ) ≤ ( 𝐹 ‘ 𝑑 ) ↔ ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑑 ) ) ) |
10 |
|
breq1 |
⊢ ( 𝑐 = 𝑋 → ( 𝑐 𝑁 𝑑 ↔ 𝑋 𝑁 𝑑 ) ) |
11 |
9 10
|
bibi12d |
⊢ ( 𝑐 = 𝑋 → ( ( ( 𝐹 ‘ 𝑐 ) ≤ ( 𝐹 ‘ 𝑑 ) ↔ 𝑐 𝑁 𝑑 ) ↔ ( ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑑 ) ↔ 𝑋 𝑁 𝑑 ) ) ) |
12 |
11
|
imbi2d |
⊢ ( 𝑐 = 𝑋 → ( ( 𝜑 → ( ( 𝐹 ‘ 𝑐 ) ≤ ( 𝐹 ‘ 𝑑 ) ↔ 𝑐 𝑁 𝑑 ) ) ↔ ( 𝜑 → ( ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑑 ) ↔ 𝑋 𝑁 𝑑 ) ) ) ) |
13 |
|
fveq2 |
⊢ ( 𝑑 = 𝑌 → ( 𝐹 ‘ 𝑑 ) = ( 𝐹 ‘ 𝑌 ) ) |
14 |
13
|
breq2d |
⊢ ( 𝑑 = 𝑌 → ( ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑑 ) ↔ ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑌 ) ) ) |
15 |
|
breq2 |
⊢ ( 𝑑 = 𝑌 → ( 𝑋 𝑁 𝑑 ↔ 𝑋 𝑁 𝑌 ) ) |
16 |
14 15
|
bibi12d |
⊢ ( 𝑑 = 𝑌 → ( ( ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑑 ) ↔ 𝑋 𝑁 𝑑 ) ↔ ( ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑌 ) ↔ 𝑋 𝑁 𝑌 ) ) ) |
17 |
16
|
imbi2d |
⊢ ( 𝑑 = 𝑌 → ( ( 𝜑 → ( ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑑 ) ↔ 𝑋 𝑁 𝑑 ) ) ↔ ( 𝜑 → ( ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑌 ) ↔ 𝑋 𝑁 𝑌 ) ) ) ) |
18 |
|
fofn |
⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → 𝐹 Fn 𝑉 ) |
19 |
3 18
|
syl |
⊢ ( 𝜑 → 𝐹 Fn 𝑉 ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → 𝐹 Fn 𝑉 ) |
21 |
20
|
fndmd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → dom 𝐹 = 𝑉 ) |
22 |
21
|
rexeqdv |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → ( ∃ 𝑎 ∈ dom 𝐹 ( 𝑎 𝐹 ( 𝐹 ‘ 𝑐 ) ∧ 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ) ↔ ∃ 𝑎 ∈ 𝑉 ( 𝑎 𝐹 ( 𝐹 ‘ 𝑐 ) ∧ 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ) ) ) |
23 |
|
fnbrfvb |
⊢ ( ( 𝐹 Fn 𝑉 ∧ 𝑎 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ↔ 𝑎 𝐹 ( 𝐹 ‘ 𝑐 ) ) ) |
24 |
20 23
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) ∧ 𝑎 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ↔ 𝑎 𝐹 ( 𝐹 ‘ 𝑐 ) ) ) |
25 |
24
|
anbi1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) ∧ 𝑎 ∈ 𝑉 ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ∧ 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ) ↔ ( 𝑎 𝐹 ( 𝐹 ‘ 𝑐 ) ∧ 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ) ) ) |
26 |
|
ancom |
⊢ ( ( 𝑎 𝑁 𝑏 ∧ 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ) ↔ ( 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ∧ 𝑎 𝑁 𝑏 ) ) |
27 |
|
vex |
⊢ 𝑏 ∈ V |
28 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑑 ) ∈ V |
29 |
27 28
|
breldm |
⊢ ( 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) → 𝑏 ∈ dom 𝐹 ) |
30 |
29
|
adantr |
⊢ ( ( 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ∧ 𝑎 𝑁 𝑏 ) → 𝑏 ∈ dom 𝐹 ) |
31 |
30
|
pm4.71ri |
⊢ ( ( 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ∧ 𝑎 𝑁 𝑏 ) ↔ ( 𝑏 ∈ dom 𝐹 ∧ ( 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ∧ 𝑎 𝑁 𝑏 ) ) ) |
32 |
26 31
|
bitri |
⊢ ( ( 𝑎 𝑁 𝑏 ∧ 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ) ↔ ( 𝑏 ∈ dom 𝐹 ∧ ( 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ∧ 𝑎 𝑁 𝑏 ) ) ) |
33 |
32
|
exbii |
⊢ ( ∃ 𝑏 ( 𝑎 𝑁 𝑏 ∧ 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ) ↔ ∃ 𝑏 ( 𝑏 ∈ dom 𝐹 ∧ ( 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ∧ 𝑎 𝑁 𝑏 ) ) ) |
34 |
|
vex |
⊢ 𝑎 ∈ V |
35 |
34 28
|
brco |
⊢ ( 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ↔ ∃ 𝑏 ( 𝑎 𝑁 𝑏 ∧ 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ) ) |
36 |
|
df-rex |
⊢ ( ∃ 𝑏 ∈ dom 𝐹 ( 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ∧ 𝑎 𝑁 𝑏 ) ↔ ∃ 𝑏 ( 𝑏 ∈ dom 𝐹 ∧ ( 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ∧ 𝑎 𝑁 𝑏 ) ) ) |
37 |
33 35 36
|
3bitr4i |
⊢ ( 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ↔ ∃ 𝑏 ∈ dom 𝐹 ( 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ∧ 𝑎 𝑁 𝑏 ) ) |
38 |
20
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ) → 𝐹 Fn 𝑉 ) |
39 |
|
fnbrfvb |
⊢ ( ( 𝐹 Fn 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ↔ 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ) ) |
40 |
38 39
|
sylan |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ) ∧ 𝑏 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ↔ 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ) ) |
41 |
40
|
anbi1d |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ) ∧ 𝑏 ∈ 𝑉 ) → ( ( ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ∧ 𝑎 𝑁 𝑏 ) ↔ ( 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ∧ 𝑎 𝑁 𝑏 ) ) ) |
42 |
7
|
3expa |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ) → ( 𝑎 𝑁 𝑏 ↔ 𝑐 𝑁 𝑑 ) ) ) |
43 |
42
|
an32s |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ) → ( 𝑎 𝑁 𝑏 ↔ 𝑐 𝑁 𝑑 ) ) ) |
44 |
43
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑏 ∈ 𝑉 ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ) → ( 𝑎 𝑁 𝑏 ↔ 𝑐 𝑁 𝑑 ) ) ) |
45 |
44
|
impl |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ) → ( 𝑎 𝑁 𝑏 ↔ 𝑐 𝑁 𝑑 ) ) |
46 |
45
|
pm5.32da |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ) → ( ( ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ∧ 𝑎 𝑁 𝑏 ) ↔ ( ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ∧ 𝑐 𝑁 𝑑 ) ) ) |
47 |
46
|
an32s |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ) ∧ 𝑏 ∈ 𝑉 ) → ( ( ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ∧ 𝑎 𝑁 𝑏 ) ↔ ( ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ∧ 𝑐 𝑁 𝑑 ) ) ) |
48 |
41 47
|
bitr3d |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ) ∧ 𝑏 ∈ 𝑉 ) → ( ( 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ∧ 𝑎 𝑁 𝑏 ) ↔ ( ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ∧ 𝑐 𝑁 𝑑 ) ) ) |
49 |
48
|
rexbidva |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ) → ( ∃ 𝑏 ∈ 𝑉 ( 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ∧ 𝑎 𝑁 𝑏 ) ↔ ∃ 𝑏 ∈ 𝑉 ( ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ∧ 𝑐 𝑁 𝑑 ) ) ) |
50 |
|
r19.41v |
⊢ ( ∃ 𝑏 ∈ 𝑉 ( ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ∧ 𝑐 𝑁 𝑑 ) ↔ ( ∃ 𝑏 ∈ 𝑉 ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ∧ 𝑐 𝑁 𝑑 ) ) |
51 |
49 50
|
bitrdi |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ) → ( ∃ 𝑏 ∈ 𝑉 ( 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ∧ 𝑎 𝑁 𝑏 ) ↔ ( ∃ 𝑏 ∈ 𝑉 ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ∧ 𝑐 𝑁 𝑑 ) ) ) |
52 |
21
|
rexeqdv |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → ( ∃ 𝑏 ∈ dom 𝐹 ( 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ∧ 𝑎 𝑁 𝑏 ) ↔ ∃ 𝑏 ∈ 𝑉 ( 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ∧ 𝑎 𝑁 𝑏 ) ) ) |
53 |
52
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ) → ( ∃ 𝑏 ∈ dom 𝐹 ( 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ∧ 𝑎 𝑁 𝑏 ) ↔ ∃ 𝑏 ∈ 𝑉 ( 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ∧ 𝑎 𝑁 𝑏 ) ) ) |
54 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → 𝑑 ∈ 𝑉 ) |
55 |
|
eqid |
⊢ ( 𝐹 ‘ 𝑑 ) = ( 𝐹 ‘ 𝑑 ) |
56 |
|
fveqeq2 |
⊢ ( 𝑏 = 𝑑 → ( ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ↔ ( 𝐹 ‘ 𝑑 ) = ( 𝐹 ‘ 𝑑 ) ) ) |
57 |
56
|
rspcev |
⊢ ( ( 𝑑 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝑑 ) = ( 𝐹 ‘ 𝑑 ) ) → ∃ 𝑏 ∈ 𝑉 ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ) |
58 |
54 55 57
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → ∃ 𝑏 ∈ 𝑉 ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ) |
59 |
58
|
biantrurd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → ( 𝑐 𝑁 𝑑 ↔ ( ∃ 𝑏 ∈ 𝑉 ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ∧ 𝑐 𝑁 𝑑 ) ) ) |
60 |
59
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ) → ( 𝑐 𝑁 𝑑 ↔ ( ∃ 𝑏 ∈ 𝑉 ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ∧ 𝑐 𝑁 𝑑 ) ) ) |
61 |
51 53 60
|
3bitr4d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ) → ( ∃ 𝑏 ∈ dom 𝐹 ( 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ∧ 𝑎 𝑁 𝑏 ) ↔ 𝑐 𝑁 𝑑 ) ) |
62 |
37 61
|
syl5bb |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ) → ( 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ↔ 𝑐 𝑁 𝑑 ) ) |
63 |
62
|
pm5.32da |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) ∧ 𝑎 ∈ 𝑉 ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ∧ 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ) ↔ ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ∧ 𝑐 𝑁 𝑑 ) ) ) |
64 |
25 63
|
bitr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) ∧ 𝑎 ∈ 𝑉 ) → ( ( 𝑎 𝐹 ( 𝐹 ‘ 𝑐 ) ∧ 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ) ↔ ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ∧ 𝑐 𝑁 𝑑 ) ) ) |
65 |
64
|
rexbidva |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → ( ∃ 𝑎 ∈ 𝑉 ( 𝑎 𝐹 ( 𝐹 ‘ 𝑐 ) ∧ 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ) ↔ ∃ 𝑎 ∈ 𝑉 ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ∧ 𝑐 𝑁 𝑑 ) ) ) |
66 |
22 65
|
bitrd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → ( ∃ 𝑎 ∈ dom 𝐹 ( 𝑎 𝐹 ( 𝐹 ‘ 𝑐 ) ∧ 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ) ↔ ∃ 𝑎 ∈ 𝑉 ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ∧ 𝑐 𝑁 𝑑 ) ) ) |
67 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑐 ) ∈ V |
68 |
67 34
|
brcnv |
⊢ ( ( 𝐹 ‘ 𝑐 ) ◡ 𝐹 𝑎 ↔ 𝑎 𝐹 ( 𝐹 ‘ 𝑐 ) ) |
69 |
68
|
anbi1i |
⊢ ( ( ( 𝐹 ‘ 𝑐 ) ◡ 𝐹 𝑎 ∧ 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ) ↔ ( 𝑎 𝐹 ( 𝐹 ‘ 𝑐 ) ∧ 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ) ) |
70 |
34 67
|
breldm |
⊢ ( 𝑎 𝐹 ( 𝐹 ‘ 𝑐 ) → 𝑎 ∈ dom 𝐹 ) |
71 |
70
|
adantr |
⊢ ( ( 𝑎 𝐹 ( 𝐹 ‘ 𝑐 ) ∧ 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ) → 𝑎 ∈ dom 𝐹 ) |
72 |
71
|
pm4.71ri |
⊢ ( ( 𝑎 𝐹 ( 𝐹 ‘ 𝑐 ) ∧ 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ) ↔ ( 𝑎 ∈ dom 𝐹 ∧ ( 𝑎 𝐹 ( 𝐹 ‘ 𝑐 ) ∧ 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ) ) ) |
73 |
69 72
|
bitri |
⊢ ( ( ( 𝐹 ‘ 𝑐 ) ◡ 𝐹 𝑎 ∧ 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ) ↔ ( 𝑎 ∈ dom 𝐹 ∧ ( 𝑎 𝐹 ( 𝐹 ‘ 𝑐 ) ∧ 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ) ) ) |
74 |
73
|
exbii |
⊢ ( ∃ 𝑎 ( ( 𝐹 ‘ 𝑐 ) ◡ 𝐹 𝑎 ∧ 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ) ↔ ∃ 𝑎 ( 𝑎 ∈ dom 𝐹 ∧ ( 𝑎 𝐹 ( 𝐹 ‘ 𝑐 ) ∧ 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ) ) ) |
75 |
67 28
|
brco |
⊢ ( ( 𝐹 ‘ 𝑐 ) ( ( 𝐹 ∘ 𝑁 ) ∘ ◡ 𝐹 ) ( 𝐹 ‘ 𝑑 ) ↔ ∃ 𝑎 ( ( 𝐹 ‘ 𝑐 ) ◡ 𝐹 𝑎 ∧ 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ) ) |
76 |
|
df-rex |
⊢ ( ∃ 𝑎 ∈ dom 𝐹 ( 𝑎 𝐹 ( 𝐹 ‘ 𝑐 ) ∧ 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ) ↔ ∃ 𝑎 ( 𝑎 ∈ dom 𝐹 ∧ ( 𝑎 𝐹 ( 𝐹 ‘ 𝑐 ) ∧ 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ) ) ) |
77 |
74 75 76
|
3bitr4ri |
⊢ ( ∃ 𝑎 ∈ dom 𝐹 ( 𝑎 𝐹 ( 𝐹 ‘ 𝑐 ) ∧ 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ) ↔ ( 𝐹 ‘ 𝑐 ) ( ( 𝐹 ∘ 𝑁 ) ∘ ◡ 𝐹 ) ( 𝐹 ‘ 𝑑 ) ) |
78 |
|
r19.41v |
⊢ ( ∃ 𝑎 ∈ 𝑉 ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ∧ 𝑐 𝑁 𝑑 ) ↔ ( ∃ 𝑎 ∈ 𝑉 ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ∧ 𝑐 𝑁 𝑑 ) ) |
79 |
66 77 78
|
3bitr3g |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑐 ) ( ( 𝐹 ∘ 𝑁 ) ∘ ◡ 𝐹 ) ( 𝐹 ‘ 𝑑 ) ↔ ( ∃ 𝑎 ∈ 𝑉 ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ∧ 𝑐 𝑁 𝑑 ) ) ) |
80 |
1 2 3 4 6 5
|
imasle |
⊢ ( 𝜑 → ≤ = ( ( 𝐹 ∘ 𝑁 ) ∘ ◡ 𝐹 ) ) |
81 |
80
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → ≤ = ( ( 𝐹 ∘ 𝑁 ) ∘ ◡ 𝐹 ) ) |
82 |
81
|
breqd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑐 ) ≤ ( 𝐹 ‘ 𝑑 ) ↔ ( 𝐹 ‘ 𝑐 ) ( ( 𝐹 ∘ 𝑁 ) ∘ ◡ 𝐹 ) ( 𝐹 ‘ 𝑑 ) ) ) |
83 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → 𝑐 ∈ 𝑉 ) |
84 |
|
eqid |
⊢ ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑐 ) |
85 |
|
fveqeq2 |
⊢ ( 𝑎 = 𝑐 → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ↔ ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑐 ) ) ) |
86 |
85
|
rspcev |
⊢ ( ( 𝑐 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑐 ) ) → ∃ 𝑎 ∈ 𝑉 ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ) |
87 |
83 84 86
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → ∃ 𝑎 ∈ 𝑉 ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ) |
88 |
87
|
biantrurd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → ( 𝑐 𝑁 𝑑 ↔ ( ∃ 𝑎 ∈ 𝑉 ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ∧ 𝑐 𝑁 𝑑 ) ) ) |
89 |
79 82 88
|
3bitr4d |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑐 ) ≤ ( 𝐹 ‘ 𝑑 ) ↔ 𝑐 𝑁 𝑑 ) ) |
90 |
89
|
expcom |
⊢ ( ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) → ( 𝜑 → ( ( 𝐹 ‘ 𝑐 ) ≤ ( 𝐹 ‘ 𝑑 ) ↔ 𝑐 𝑁 𝑑 ) ) ) |
91 |
12 17 90
|
vtocl2ga |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝜑 → ( ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑌 ) ↔ 𝑋 𝑁 𝑌 ) ) ) |
92 |
91
|
com12 |
⊢ ( 𝜑 → ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑌 ) ↔ 𝑋 𝑁 𝑌 ) ) ) |
93 |
92
|
3impib |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑌 ) ↔ 𝑋 𝑁 𝑌 ) ) |