Metamath Proof Explorer


Theorem imaslmhm

Description: Given a function F with homomorphic properties, build the image of a left module. (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses imasmhm.b 𝐵 = ( Base ‘ 𝑊 )
imasmhm.f ( 𝜑𝐹 : 𝐵𝐶 )
imasmhm.1 + = ( +g𝑊 )
imasmhm.2 ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ∧ ( 𝑝𝐵𝑞𝐵 ) ) → ( ( ( 𝐹𝑎 ) = ( 𝐹𝑝 ) ∧ ( 𝐹𝑏 ) = ( 𝐹𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ) )
imaslmhm.1 𝐷 = ( Scalar ‘ 𝑊 )
imaslmhm.2 𝐾 = ( Base ‘ 𝐷 )
imaslmhm.3 ( ( 𝜑 ∧ ( 𝑘𝐾𝑎𝐵𝑏𝐵 ) ) → ( ( 𝐹𝑎 ) = ( 𝐹𝑏 ) → ( 𝐹 ‘ ( 𝑘 × 𝑎 ) ) = ( 𝐹 ‘ ( 𝑘 × 𝑏 ) ) ) )
imaslmhm.w ( 𝜑𝑊 ∈ LMod )
imaslmhm.4 × = ( ·𝑠𝑊 )
Assertion imaslmhm ( 𝜑 → ( ( 𝐹s 𝑊 ) ∈ LMod ∧ 𝐹 ∈ ( 𝑊 LMHom ( 𝐹s 𝑊 ) ) ) )

Proof

Step Hyp Ref Expression
1 imasmhm.b 𝐵 = ( Base ‘ 𝑊 )
2 imasmhm.f ( 𝜑𝐹 : 𝐵𝐶 )
3 imasmhm.1 + = ( +g𝑊 )
4 imasmhm.2 ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ∧ ( 𝑝𝐵𝑞𝐵 ) ) → ( ( ( 𝐹𝑎 ) = ( 𝐹𝑝 ) ∧ ( 𝐹𝑏 ) = ( 𝐹𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ) )
5 imaslmhm.1 𝐷 = ( Scalar ‘ 𝑊 )
6 imaslmhm.2 𝐾 = ( Base ‘ 𝐷 )
7 imaslmhm.3 ( ( 𝜑 ∧ ( 𝑘𝐾𝑎𝐵𝑏𝐵 ) ) → ( ( 𝐹𝑎 ) = ( 𝐹𝑏 ) → ( 𝐹 ‘ ( 𝑘 × 𝑎 ) ) = ( 𝐹 ‘ ( 𝑘 × 𝑏 ) ) ) )
8 imaslmhm.w ( 𝜑𝑊 ∈ LMod )
9 imaslmhm.4 × = ( ·𝑠𝑊 )
10 eqidd ( 𝜑 → ( 𝐹s 𝑊 ) = ( 𝐹s 𝑊 ) )
11 5 fveq2i ( Base ‘ 𝐷 ) = ( Base ‘ ( Scalar ‘ 𝑊 ) )
12 6 11 eqtri 𝐾 = ( Base ‘ ( Scalar ‘ 𝑊 ) )
13 eqid ( 0g𝑊 ) = ( 0g𝑊 )
14 fimadmfo ( 𝐹 : 𝐵𝐶𝐹 : 𝐵onto→ ( 𝐹𝐵 ) )
15 2 14 syl ( 𝜑𝐹 : 𝐵onto→ ( 𝐹𝐵 ) )
16 10 1 12 3 9 13 15 4 7 8 imaslmod ( 𝜑 → ( 𝐹s 𝑊 ) ∈ LMod )
17 eqid ( ·𝑠 ‘ ( 𝐹s 𝑊 ) ) = ( ·𝑠 ‘ ( 𝐹s 𝑊 ) )
18 eqid ( Scalar ‘ ( 𝐹s 𝑊 ) ) = ( Scalar ‘ ( 𝐹s 𝑊 ) )
19 1 a1i ( 𝜑𝐵 = ( Base ‘ 𝑊 ) )
20 10 19 15 8 5 imassca ( 𝜑𝐷 = ( Scalar ‘ ( 𝐹s 𝑊 ) ) )
21 20 eqcomd ( 𝜑 → ( Scalar ‘ ( 𝐹s 𝑊 ) ) = 𝐷 )
22 8 lmodgrpd ( 𝜑𝑊 ∈ Grp )
23 1 2 3 4 22 imasghm ( 𝜑 → ( ( 𝐹s 𝑊 ) ∈ Grp ∧ 𝐹 ∈ ( 𝑊 GrpHom ( 𝐹s 𝑊 ) ) ) )
24 23 simprd ( 𝜑𝐹 ∈ ( 𝑊 GrpHom ( 𝐹s 𝑊 ) ) )
25 10 19 15 8 5 6 9 17 7 imasvscaval ( ( 𝜑𝑢𝐾𝑥𝐵 ) → ( 𝑢 ( ·𝑠 ‘ ( 𝐹s 𝑊 ) ) ( 𝐹𝑥 ) ) = ( 𝐹 ‘ ( 𝑢 × 𝑥 ) ) )
26 25 3expb ( ( 𝜑 ∧ ( 𝑢𝐾𝑥𝐵 ) ) → ( 𝑢 ( ·𝑠 ‘ ( 𝐹s 𝑊 ) ) ( 𝐹𝑥 ) ) = ( 𝐹 ‘ ( 𝑢 × 𝑥 ) ) )
27 26 eqcomd ( ( 𝜑 ∧ ( 𝑢𝐾𝑥𝐵 ) ) → ( 𝐹 ‘ ( 𝑢 × 𝑥 ) ) = ( 𝑢 ( ·𝑠 ‘ ( 𝐹s 𝑊 ) ) ( 𝐹𝑥 ) ) )
28 1 9 17 5 18 6 8 16 21 24 27 islmhmd ( 𝜑𝐹 ∈ ( 𝑊 LMHom ( 𝐹s 𝑊 ) ) )
29 16 28 jca ( 𝜑 → ( ( 𝐹s 𝑊 ) ∈ LMod ∧ 𝐹 ∈ ( 𝑊 LMHom ( 𝐹s 𝑊 ) ) ) )