Step |
Hyp |
Ref |
Expression |
1 |
|
imasmhm.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
2 |
|
imasmhm.f |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐶 ) |
3 |
|
imasmhm.1 |
⊢ + = ( +g ‘ 𝑊 ) |
4 |
|
imasmhm.2 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ) ) |
5 |
|
imaslmhm.1 |
⊢ 𝐷 = ( Scalar ‘ 𝑊 ) |
6 |
|
imaslmhm.2 |
⊢ 𝐾 = ( Base ‘ 𝐷 ) |
7 |
|
imaslmhm.3 |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → ( 𝐹 ‘ ( 𝑘 × 𝑎 ) ) = ( 𝐹 ‘ ( 𝑘 × 𝑏 ) ) ) ) |
8 |
|
imaslmhm.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
9 |
|
imaslmhm.4 |
⊢ × = ( ·𝑠 ‘ 𝑊 ) |
10 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐹 “s 𝑊 ) = ( 𝐹 “s 𝑊 ) ) |
11 |
5
|
fveq2i |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
12 |
6 11
|
eqtri |
⊢ 𝐾 = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
13 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
14 |
|
fimadmfo |
⊢ ( 𝐹 : 𝐵 ⟶ 𝐶 → 𝐹 : 𝐵 –onto→ ( 𝐹 “ 𝐵 ) ) |
15 |
2 14
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐵 –onto→ ( 𝐹 “ 𝐵 ) ) |
16 |
10 1 12 3 9 13 15 4 7 8
|
imaslmod |
⊢ ( 𝜑 → ( 𝐹 “s 𝑊 ) ∈ LMod ) |
17 |
|
eqid |
⊢ ( ·𝑠 ‘ ( 𝐹 “s 𝑊 ) ) = ( ·𝑠 ‘ ( 𝐹 “s 𝑊 ) ) |
18 |
|
eqid |
⊢ ( Scalar ‘ ( 𝐹 “s 𝑊 ) ) = ( Scalar ‘ ( 𝐹 “s 𝑊 ) ) |
19 |
1
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑊 ) ) |
20 |
10 19 15 8 5
|
imassca |
⊢ ( 𝜑 → 𝐷 = ( Scalar ‘ ( 𝐹 “s 𝑊 ) ) ) |
21 |
20
|
eqcomd |
⊢ ( 𝜑 → ( Scalar ‘ ( 𝐹 “s 𝑊 ) ) = 𝐷 ) |
22 |
8
|
lmodgrpd |
⊢ ( 𝜑 → 𝑊 ∈ Grp ) |
23 |
1 2 3 4 22
|
imasghm |
⊢ ( 𝜑 → ( ( 𝐹 “s 𝑊 ) ∈ Grp ∧ 𝐹 ∈ ( 𝑊 GrpHom ( 𝐹 “s 𝑊 ) ) ) ) |
24 |
23
|
simprd |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑊 GrpHom ( 𝐹 “s 𝑊 ) ) ) |
25 |
10 19 15 8 5 6 9 17 7
|
imasvscaval |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑢 ( ·𝑠 ‘ ( 𝐹 “s 𝑊 ) ) ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ ( 𝑢 × 𝑥 ) ) ) |
26 |
25
|
3expb |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝑢 ( ·𝑠 ‘ ( 𝐹 “s 𝑊 ) ) ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ ( 𝑢 × 𝑥 ) ) ) |
27 |
26
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑢 × 𝑥 ) ) = ( 𝑢 ( ·𝑠 ‘ ( 𝐹 “s 𝑊 ) ) ( 𝐹 ‘ 𝑥 ) ) ) |
28 |
1 9 17 5 18 6 8 16 21 24 27
|
islmhmd |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑊 LMHom ( 𝐹 “s 𝑊 ) ) ) |
29 |
16 28
|
jca |
⊢ ( 𝜑 → ( ( 𝐹 “s 𝑊 ) ∈ LMod ∧ 𝐹 ∈ ( 𝑊 LMHom ( 𝐹 “s 𝑊 ) ) ) ) |