| Step | Hyp | Ref | Expression | 
						
							| 1 |  | imasmnd.u | ⊢ ( 𝜑  →  𝑈  =  ( 𝐹  “s  𝑅 ) ) | 
						
							| 2 |  | imasmnd.v | ⊢ ( 𝜑  →  𝑉  =  ( Base ‘ 𝑅 ) ) | 
						
							| 3 |  | imasmnd.p | ⊢  +   =  ( +g ‘ 𝑅 ) | 
						
							| 4 |  | imasmnd.f | ⊢ ( 𝜑  →  𝐹 : 𝑉 –onto→ 𝐵 ) | 
						
							| 5 |  | imasmnd.e | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  ∧  ( 𝑝  ∈  𝑉  ∧  𝑞  ∈  𝑉 ) )  →  ( ( ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑝 )  ∧  ( 𝐹 ‘ 𝑏 )  =  ( 𝐹 ‘ 𝑞 ) )  →  ( 𝐹 ‘ ( 𝑎  +  𝑏 ) )  =  ( 𝐹 ‘ ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 6 |  | imasmnd2.r | ⊢ ( 𝜑  →  𝑅  ∈  𝑊 ) | 
						
							| 7 |  | imasmnd2.1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 )  →  ( 𝑥  +  𝑦 )  ∈  𝑉 ) | 
						
							| 8 |  | imasmnd2.2 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( 𝐹 ‘ ( ( 𝑥  +  𝑦 )  +  𝑧 ) )  =  ( 𝐹 ‘ ( 𝑥  +  ( 𝑦  +  𝑧 ) ) ) ) | 
						
							| 9 |  | imasmnd2.3 | ⊢ ( 𝜑  →   0   ∈  𝑉 ) | 
						
							| 10 |  | imasmnd2.4 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  ( 𝐹 ‘ (  0   +  𝑥 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 11 |  | imasmnd2.5 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  ( 𝐹 ‘ ( 𝑥  +   0  ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 12 | 1 2 4 6 | imasbas | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝑈 ) ) | 
						
							| 13 |  | eqidd | ⊢ ( 𝜑  →  ( +g ‘ 𝑈 )  =  ( +g ‘ 𝑈 ) ) | 
						
							| 14 |  | eqid | ⊢ ( +g ‘ 𝑈 )  =  ( +g ‘ 𝑈 ) | 
						
							| 15 | 7 | 3expb | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 ) )  →  ( 𝑥  +  𝑦 )  ∈  𝑉 ) | 
						
							| 16 | 15 | caovclg | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝑉  ∧  𝑞  ∈  𝑉 ) )  →  ( 𝑝  +  𝑞 )  ∈  𝑉 ) | 
						
							| 17 | 4 5 1 2 6 3 14 16 | imasaddf | ⊢ ( 𝜑  →  ( +g ‘ 𝑈 ) : ( 𝐵  ×  𝐵 ) ⟶ 𝐵 ) | 
						
							| 18 |  | fovcdm | ⊢ ( ( ( +g ‘ 𝑈 ) : ( 𝐵  ×  𝐵 ) ⟶ 𝐵  ∧  𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵 )  →  ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 )  ∈  𝐵 ) | 
						
							| 19 | 17 18 | syl3an1 | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵 )  →  ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 )  ∈  𝐵 ) | 
						
							| 20 |  | forn | ⊢ ( 𝐹 : 𝑉 –onto→ 𝐵  →  ran  𝐹  =  𝐵 ) | 
						
							| 21 | 4 20 | syl | ⊢ ( 𝜑  →  ran  𝐹  =  𝐵 ) | 
						
							| 22 | 21 | eleq2d | ⊢ ( 𝜑  →  ( 𝑢  ∈  ran  𝐹  ↔  𝑢  ∈  𝐵 ) ) | 
						
							| 23 | 21 | eleq2d | ⊢ ( 𝜑  →  ( 𝑣  ∈  ran  𝐹  ↔  𝑣  ∈  𝐵 ) ) | 
						
							| 24 | 21 | eleq2d | ⊢ ( 𝜑  →  ( 𝑤  ∈  ran  𝐹  ↔  𝑤  ∈  𝐵 ) ) | 
						
							| 25 | 22 23 24 | 3anbi123d | ⊢ ( 𝜑  →  ( ( 𝑢  ∈  ran  𝐹  ∧  𝑣  ∈  ran  𝐹  ∧  𝑤  ∈  ran  𝐹 )  ↔  ( 𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) ) ) | 
						
							| 26 |  | fofn | ⊢ ( 𝐹 : 𝑉 –onto→ 𝐵  →  𝐹  Fn  𝑉 ) | 
						
							| 27 | 4 26 | syl | ⊢ ( 𝜑  →  𝐹  Fn  𝑉 ) | 
						
							| 28 |  | fvelrnb | ⊢ ( 𝐹  Fn  𝑉  →  ( 𝑢  ∈  ran  𝐹  ↔  ∃ 𝑥  ∈  𝑉 ( 𝐹 ‘ 𝑥 )  =  𝑢 ) ) | 
						
							| 29 |  | fvelrnb | ⊢ ( 𝐹  Fn  𝑉  →  ( 𝑣  ∈  ran  𝐹  ↔  ∃ 𝑦  ∈  𝑉 ( 𝐹 ‘ 𝑦 )  =  𝑣 ) ) | 
						
							| 30 |  | fvelrnb | ⊢ ( 𝐹  Fn  𝑉  →  ( 𝑤  ∈  ran  𝐹  ↔  ∃ 𝑧  ∈  𝑉 ( 𝐹 ‘ 𝑧 )  =  𝑤 ) ) | 
						
							| 31 | 28 29 30 | 3anbi123d | ⊢ ( 𝐹  Fn  𝑉  →  ( ( 𝑢  ∈  ran  𝐹  ∧  𝑣  ∈  ran  𝐹  ∧  𝑤  ∈  ran  𝐹 )  ↔  ( ∃ 𝑥  ∈  𝑉 ( 𝐹 ‘ 𝑥 )  =  𝑢  ∧  ∃ 𝑦  ∈  𝑉 ( 𝐹 ‘ 𝑦 )  =  𝑣  ∧  ∃ 𝑧  ∈  𝑉 ( 𝐹 ‘ 𝑧 )  =  𝑤 ) ) ) | 
						
							| 32 | 27 31 | syl | ⊢ ( 𝜑  →  ( ( 𝑢  ∈  ran  𝐹  ∧  𝑣  ∈  ran  𝐹  ∧  𝑤  ∈  ran  𝐹 )  ↔  ( ∃ 𝑥  ∈  𝑉 ( 𝐹 ‘ 𝑥 )  =  𝑢  ∧  ∃ 𝑦  ∈  𝑉 ( 𝐹 ‘ 𝑦 )  =  𝑣  ∧  ∃ 𝑧  ∈  𝑉 ( 𝐹 ‘ 𝑧 )  =  𝑤 ) ) ) | 
						
							| 33 | 25 32 | bitr3d | ⊢ ( 𝜑  →  ( ( 𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  ↔  ( ∃ 𝑥  ∈  𝑉 ( 𝐹 ‘ 𝑥 )  =  𝑢  ∧  ∃ 𝑦  ∈  𝑉 ( 𝐹 ‘ 𝑦 )  =  𝑣  ∧  ∃ 𝑧  ∈  𝑉 ( 𝐹 ‘ 𝑧 )  =  𝑤 ) ) ) | 
						
							| 34 |  | 3reeanv | ⊢ ( ∃ 𝑥  ∈  𝑉 ∃ 𝑦  ∈  𝑉 ∃ 𝑧  ∈  𝑉 ( ( 𝐹 ‘ 𝑥 )  =  𝑢  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑣  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑤 )  ↔  ( ∃ 𝑥  ∈  𝑉 ( 𝐹 ‘ 𝑥 )  =  𝑢  ∧  ∃ 𝑦  ∈  𝑉 ( 𝐹 ‘ 𝑦 )  =  𝑣  ∧  ∃ 𝑧  ∈  𝑉 ( 𝐹 ‘ 𝑧 )  =  𝑤 ) ) | 
						
							| 35 | 33 34 | bitr4di | ⊢ ( 𝜑  →  ( ( 𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  ↔  ∃ 𝑥  ∈  𝑉 ∃ 𝑦  ∈  𝑉 ∃ 𝑧  ∈  𝑉 ( ( 𝐹 ‘ 𝑥 )  =  𝑢  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑣  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑤 ) ) ) | 
						
							| 36 |  | simpl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  𝜑 ) | 
						
							| 37 | 7 | 3adant3r3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( 𝑥  +  𝑦 )  ∈  𝑉 ) | 
						
							| 38 |  | simpr3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  𝑧  ∈  𝑉 ) | 
						
							| 39 | 4 5 1 2 6 3 14 | imasaddval | ⊢ ( ( 𝜑  ∧  ( 𝑥  +  𝑦 )  ∈  𝑉  ∧  𝑧  ∈  𝑉 )  →  ( ( 𝐹 ‘ ( 𝑥  +  𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) )  =  ( 𝐹 ‘ ( ( 𝑥  +  𝑦 )  +  𝑧 ) ) ) | 
						
							| 40 | 36 37 38 39 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( ( 𝐹 ‘ ( 𝑥  +  𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) )  =  ( 𝐹 ‘ ( ( 𝑥  +  𝑦 )  +  𝑧 ) ) ) | 
						
							| 41 |  | simpr1 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  𝑥  ∈  𝑉 ) | 
						
							| 42 | 16 | caovclg | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( 𝑦  +  𝑧 )  ∈  𝑉 ) | 
						
							| 43 | 42 | 3adantr1 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( 𝑦  +  𝑧 )  ∈  𝑉 ) | 
						
							| 44 | 4 5 1 2 6 3 14 | imasaddval | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉  ∧  ( 𝑦  +  𝑧 )  ∈  𝑉 )  →  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦  +  𝑧 ) ) )  =  ( 𝐹 ‘ ( 𝑥  +  ( 𝑦  +  𝑧 ) ) ) ) | 
						
							| 45 | 36 41 43 44 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦  +  𝑧 ) ) )  =  ( 𝐹 ‘ ( 𝑥  +  ( 𝑦  +  𝑧 ) ) ) ) | 
						
							| 46 | 8 40 45 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( ( 𝐹 ‘ ( 𝑥  +  𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦  +  𝑧 ) ) ) ) | 
						
							| 47 | 4 5 1 2 6 3 14 | imasaddval | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 )  →  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) )  =  ( 𝐹 ‘ ( 𝑥  +  𝑦 ) ) ) | 
						
							| 48 | 47 | 3adant3r3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) )  =  ( 𝐹 ‘ ( 𝑥  +  𝑦 ) ) ) | 
						
							| 49 | 48 | oveq1d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) )  =  ( ( 𝐹 ‘ ( 𝑥  +  𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 50 | 4 5 1 2 6 3 14 | imasaddval | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 )  →  ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) )  =  ( 𝐹 ‘ ( 𝑦  +  𝑧 ) ) ) | 
						
							| 51 | 50 | 3adant3r1 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) )  =  ( 𝐹 ‘ ( 𝑦  +  𝑧 ) ) ) | 
						
							| 52 | 51 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦  +  𝑧 ) ) ) ) | 
						
							| 53 | 46 49 52 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) ) | 
						
							| 54 |  | simp1 | ⊢ ( ( ( 𝐹 ‘ 𝑥 )  =  𝑢  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑣  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑤 )  →  ( 𝐹 ‘ 𝑥 )  =  𝑢 ) | 
						
							| 55 |  | simp2 | ⊢ ( ( ( 𝐹 ‘ 𝑥 )  =  𝑢  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑣  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑤 )  →  ( 𝐹 ‘ 𝑦 )  =  𝑣 ) | 
						
							| 56 | 54 55 | oveq12d | ⊢ ( ( ( 𝐹 ‘ 𝑥 )  =  𝑢  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑣  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑤 )  →  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) )  =  ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ) | 
						
							| 57 |  | simp3 | ⊢ ( ( ( 𝐹 ‘ 𝑥 )  =  𝑢  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑣  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑤 )  →  ( 𝐹 ‘ 𝑧 )  =  𝑤 ) | 
						
							| 58 | 56 57 | oveq12d | ⊢ ( ( ( 𝐹 ‘ 𝑥 )  =  𝑢  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑣  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑤 )  →  ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) )  =  ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) 𝑤 ) ) | 
						
							| 59 | 55 57 | oveq12d | ⊢ ( ( ( 𝐹 ‘ 𝑥 )  =  𝑢  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑣  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑤 )  →  ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) )  =  ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) | 
						
							| 60 | 54 59 | oveq12d | ⊢ ( ( ( 𝐹 ‘ 𝑥 )  =  𝑢  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑣  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑤 )  →  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) )  =  ( 𝑢 ( +g ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) ) | 
						
							| 61 | 58 60 | eqeq12d | ⊢ ( ( ( 𝐹 ‘ 𝑥 )  =  𝑢  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑣  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑤 )  →  ( ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) )  ↔  ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) 𝑤 )  =  ( 𝑢 ( +g ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) ) ) | 
						
							| 62 | 53 61 | syl5ibcom | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( ( ( 𝐹 ‘ 𝑥 )  =  𝑢  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑣  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑤 )  →  ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) 𝑤 )  =  ( 𝑢 ( +g ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) ) ) | 
						
							| 63 | 62 | 3exp2 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑉  →  ( 𝑦  ∈  𝑉  →  ( 𝑧  ∈  𝑉  →  ( ( ( 𝐹 ‘ 𝑥 )  =  𝑢  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑣  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑤 )  →  ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) 𝑤 )  =  ( 𝑢 ( +g ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) ) ) ) ) ) | 
						
							| 64 | 63 | imp32 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 ) )  →  ( 𝑧  ∈  𝑉  →  ( ( ( 𝐹 ‘ 𝑥 )  =  𝑢  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑣  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑤 )  →  ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) 𝑤 )  =  ( 𝑢 ( +g ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) ) ) ) | 
						
							| 65 | 64 | rexlimdv | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 ) )  →  ( ∃ 𝑧  ∈  𝑉 ( ( 𝐹 ‘ 𝑥 )  =  𝑢  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑣  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑤 )  →  ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) 𝑤 )  =  ( 𝑢 ( +g ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) ) ) | 
						
							| 66 | 65 | rexlimdvva | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  𝑉 ∃ 𝑦  ∈  𝑉 ∃ 𝑧  ∈  𝑉 ( ( 𝐹 ‘ 𝑥 )  =  𝑢  ∧  ( 𝐹 ‘ 𝑦 )  =  𝑣  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑤 )  →  ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) 𝑤 )  =  ( 𝑢 ( +g ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) ) ) | 
						
							| 67 | 35 66 | sylbid | ⊢ ( 𝜑  →  ( ( 𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  →  ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) 𝑤 )  =  ( 𝑢 ( +g ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) ) ) | 
						
							| 68 | 67 | imp | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) 𝑤 )  =  ( 𝑢 ( +g ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) ) | 
						
							| 69 |  | fof | ⊢ ( 𝐹 : 𝑉 –onto→ 𝐵  →  𝐹 : 𝑉 ⟶ 𝐵 ) | 
						
							| 70 | 4 69 | syl | ⊢ ( 𝜑  →  𝐹 : 𝑉 ⟶ 𝐵 ) | 
						
							| 71 | 70 9 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐹 ‘  0  )  ∈  𝐵 ) | 
						
							| 72 | 27 28 | syl | ⊢ ( 𝜑  →  ( 𝑢  ∈  ran  𝐹  ↔  ∃ 𝑥  ∈  𝑉 ( 𝐹 ‘ 𝑥 )  =  𝑢 ) ) | 
						
							| 73 | 22 72 | bitr3d | ⊢ ( 𝜑  →  ( 𝑢  ∈  𝐵  ↔  ∃ 𝑥  ∈  𝑉 ( 𝐹 ‘ 𝑥 )  =  𝑢 ) ) | 
						
							| 74 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  𝜑 ) | 
						
							| 75 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →   0   ∈  𝑉 ) | 
						
							| 76 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  𝑥  ∈  𝑉 ) | 
						
							| 77 | 4 5 1 2 6 3 14 | imasaddval | ⊢ ( ( 𝜑  ∧   0   ∈  𝑉  ∧  𝑥  ∈  𝑉 )  →  ( ( 𝐹 ‘  0  ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) )  =  ( 𝐹 ‘ (  0   +  𝑥 ) ) ) | 
						
							| 78 | 74 75 76 77 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  ( ( 𝐹 ‘  0  ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) )  =  ( 𝐹 ‘ (  0   +  𝑥 ) ) ) | 
						
							| 79 | 78 10 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  ( ( 𝐹 ‘  0  ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 80 |  | oveq2 | ⊢ ( ( 𝐹 ‘ 𝑥 )  =  𝑢  →  ( ( 𝐹 ‘  0  ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) )  =  ( ( 𝐹 ‘  0  ) ( +g ‘ 𝑈 ) 𝑢 ) ) | 
						
							| 81 |  | id | ⊢ ( ( 𝐹 ‘ 𝑥 )  =  𝑢  →  ( 𝐹 ‘ 𝑥 )  =  𝑢 ) | 
						
							| 82 | 80 81 | eqeq12d | ⊢ ( ( 𝐹 ‘ 𝑥 )  =  𝑢  →  ( ( ( 𝐹 ‘  0  ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) )  =  ( 𝐹 ‘ 𝑥 )  ↔  ( ( 𝐹 ‘  0  ) ( +g ‘ 𝑈 ) 𝑢 )  =  𝑢 ) ) | 
						
							| 83 | 79 82 | syl5ibcom | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  ( ( 𝐹 ‘ 𝑥 )  =  𝑢  →  ( ( 𝐹 ‘  0  ) ( +g ‘ 𝑈 ) 𝑢 )  =  𝑢 ) ) | 
						
							| 84 | 83 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  𝑉 ( 𝐹 ‘ 𝑥 )  =  𝑢  →  ( ( 𝐹 ‘  0  ) ( +g ‘ 𝑈 ) 𝑢 )  =  𝑢 ) ) | 
						
							| 85 | 73 84 | sylbid | ⊢ ( 𝜑  →  ( 𝑢  ∈  𝐵  →  ( ( 𝐹 ‘  0  ) ( +g ‘ 𝑈 ) 𝑢 )  =  𝑢 ) ) | 
						
							| 86 | 85 | imp | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝐵 )  →  ( ( 𝐹 ‘  0  ) ( +g ‘ 𝑈 ) 𝑢 )  =  𝑢 ) | 
						
							| 87 | 4 5 1 2 6 3 14 | imasaddval | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉  ∧   0   ∈  𝑉 )  →  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘  0  ) )  =  ( 𝐹 ‘ ( 𝑥  +   0  ) ) ) | 
						
							| 88 | 75 87 | mpd3an3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘  0  ) )  =  ( 𝐹 ‘ ( 𝑥  +   0  ) ) ) | 
						
							| 89 | 88 11 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘  0  ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 90 |  | oveq1 | ⊢ ( ( 𝐹 ‘ 𝑥 )  =  𝑢  →  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘  0  ) )  =  ( 𝑢 ( +g ‘ 𝑈 ) ( 𝐹 ‘  0  ) ) ) | 
						
							| 91 | 90 81 | eqeq12d | ⊢ ( ( 𝐹 ‘ 𝑥 )  =  𝑢  →  ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘  0  ) )  =  ( 𝐹 ‘ 𝑥 )  ↔  ( 𝑢 ( +g ‘ 𝑈 ) ( 𝐹 ‘  0  ) )  =  𝑢 ) ) | 
						
							| 92 | 89 91 | syl5ibcom | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  ( ( 𝐹 ‘ 𝑥 )  =  𝑢  →  ( 𝑢 ( +g ‘ 𝑈 ) ( 𝐹 ‘  0  ) )  =  𝑢 ) ) | 
						
							| 93 | 92 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  𝑉 ( 𝐹 ‘ 𝑥 )  =  𝑢  →  ( 𝑢 ( +g ‘ 𝑈 ) ( 𝐹 ‘  0  ) )  =  𝑢 ) ) | 
						
							| 94 | 73 93 | sylbid | ⊢ ( 𝜑  →  ( 𝑢  ∈  𝐵  →  ( 𝑢 ( +g ‘ 𝑈 ) ( 𝐹 ‘  0  ) )  =  𝑢 ) ) | 
						
							| 95 | 94 | imp | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝐵 )  →  ( 𝑢 ( +g ‘ 𝑈 ) ( 𝐹 ‘  0  ) )  =  𝑢 ) | 
						
							| 96 | 12 13 19 68 71 86 95 | ismndd | ⊢ ( 𝜑  →  𝑈  ∈  Mnd ) | 
						
							| 97 | 12 13 71 86 95 | grpidd | ⊢ ( 𝜑  →  ( 𝐹 ‘  0  )  =  ( 0g ‘ 𝑈 ) ) | 
						
							| 98 | 96 97 | jca | ⊢ ( 𝜑  →  ( 𝑈  ∈  Mnd  ∧  ( 𝐹 ‘  0  )  =  ( 0g ‘ 𝑈 ) ) ) |