| Step | Hyp | Ref | Expression | 
						
							| 1 |  | imasmndf1.u | ⊢ 𝑈  =  ( 𝐹  “s  𝑅 ) | 
						
							| 2 |  | imasmndf1.v | ⊢ 𝑉  =  ( Base ‘ 𝑅 ) | 
						
							| 3 | 1 | a1i | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝐵  ∧  𝑅  ∈  Mnd )  →  𝑈  =  ( 𝐹  “s  𝑅 ) ) | 
						
							| 4 | 2 | a1i | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝐵  ∧  𝑅  ∈  Mnd )  →  𝑉  =  ( Base ‘ 𝑅 ) ) | 
						
							| 5 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 6 |  | f1f1orn | ⊢ ( 𝐹 : 𝑉 –1-1→ 𝐵  →  𝐹 : 𝑉 –1-1-onto→ ran  𝐹 ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝐵  ∧  𝑅  ∈  Mnd )  →  𝐹 : 𝑉 –1-1-onto→ ran  𝐹 ) | 
						
							| 8 |  | f1ofo | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ ran  𝐹  →  𝐹 : 𝑉 –onto→ ran  𝐹 ) | 
						
							| 9 | 7 8 | syl | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝐵  ∧  𝑅  ∈  Mnd )  →  𝐹 : 𝑉 –onto→ ran  𝐹 ) | 
						
							| 10 | 7 | f1ocpbl | ⊢ ( ( ( 𝐹 : 𝑉 –1-1→ 𝐵  ∧  𝑅  ∈  Mnd )  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  ∧  ( 𝑝  ∈  𝑉  ∧  𝑞  ∈  𝑉 ) )  →  ( ( ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑝 )  ∧  ( 𝐹 ‘ 𝑏 )  =  ( 𝐹 ‘ 𝑞 ) )  →  ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) )  =  ( 𝐹 ‘ ( 𝑝 ( +g ‘ 𝑅 ) 𝑞 ) ) ) ) | 
						
							| 11 |  | simpr | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝐵  ∧  𝑅  ∈  Mnd )  →  𝑅  ∈  Mnd ) | 
						
							| 12 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 13 | 3 4 5 9 10 11 12 | imasmnd | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝐵  ∧  𝑅  ∈  Mnd )  →  ( 𝑈  ∈  Mnd  ∧  ( 𝐹 ‘ ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑈 ) ) ) | 
						
							| 14 | 13 | simpld | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝐵  ∧  𝑅  ∈  Mnd )  →  𝑈  ∈  Mnd ) |