Metamath Proof Explorer


Theorem imasng

Description: The image of a singleton. (Contributed by NM, 8-May-2005)

Ref Expression
Assertion imasng ( 𝐴𝐵 → ( 𝑅 “ { 𝐴 } ) = { 𝑦𝐴 𝑅 𝑦 } )

Proof

Step Hyp Ref Expression
1 elex ( 𝐴𝐵𝐴 ∈ V )
2 dfima2 ( 𝑅 “ { 𝐴 } ) = { 𝑦 ∣ ∃ 𝑥 ∈ { 𝐴 } 𝑥 𝑅 𝑦 }
3 breq1 ( 𝑥 = 𝐴 → ( 𝑥 𝑅 𝑦𝐴 𝑅 𝑦 ) )
4 3 rexsng ( 𝐴 ∈ V → ( ∃ 𝑥 ∈ { 𝐴 } 𝑥 𝑅 𝑦𝐴 𝑅 𝑦 ) )
5 4 abbidv ( 𝐴 ∈ V → { 𝑦 ∣ ∃ 𝑥 ∈ { 𝐴 } 𝑥 𝑅 𝑦 } = { 𝑦𝐴 𝑅 𝑦 } )
6 2 5 eqtrid ( 𝐴 ∈ V → ( 𝑅 “ { 𝐴 } ) = { 𝑦𝐴 𝑅 𝑦 } )
7 1 6 syl ( 𝐴𝐵 → ( 𝑅 “ { 𝐴 } ) = { 𝑦𝐴 𝑅 𝑦 } )