Description: The image of a singleton. (Contributed by NM, 8-May-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | imasng | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝑅 “ { 𝐴 } ) = { 𝑦 ∣ 𝐴 𝑅 𝑦 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex | ⊢ ( 𝐴 ∈ 𝐵 → 𝐴 ∈ V ) | |
2 | dfima2 | ⊢ ( 𝑅 “ { 𝐴 } ) = { 𝑦 ∣ ∃ 𝑥 ∈ { 𝐴 } 𝑥 𝑅 𝑦 } | |
3 | breq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝑅 𝑦 ↔ 𝐴 𝑅 𝑦 ) ) | |
4 | 3 | rexsng | ⊢ ( 𝐴 ∈ V → ( ∃ 𝑥 ∈ { 𝐴 } 𝑥 𝑅 𝑦 ↔ 𝐴 𝑅 𝑦 ) ) |
5 | 4 | abbidv | ⊢ ( 𝐴 ∈ V → { 𝑦 ∣ ∃ 𝑥 ∈ { 𝐴 } 𝑥 𝑅 𝑦 } = { 𝑦 ∣ 𝐴 𝑅 𝑦 } ) |
6 | 2 5 | eqtrid | ⊢ ( 𝐴 ∈ V → ( 𝑅 “ { 𝐴 } ) = { 𝑦 ∣ 𝐴 𝑅 𝑦 } ) |
7 | 1 6 | syl | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝑅 “ { 𝐴 } ) = { 𝑦 ∣ 𝐴 𝑅 𝑦 } ) |