Metamath Proof Explorer


Theorem imasrhm

Description: Given a function F with homomorphic properties, build the image of a ring. (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses imasmhm.b 𝐵 = ( Base ‘ 𝑊 )
imasmhm.f ( 𝜑𝐹 : 𝐵𝐶 )
imasmhm.1 + = ( +g𝑊 )
imasmhm.2 ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ∧ ( 𝑝𝐵𝑞𝐵 ) ) → ( ( ( 𝐹𝑎 ) = ( 𝐹𝑝 ) ∧ ( 𝐹𝑏 ) = ( 𝐹𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ) )
imasrhm.3 · = ( .r𝑊 )
imasrhm.4 ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ∧ ( 𝑝𝐵𝑞𝐵 ) ) → ( ( ( 𝐹𝑎 ) = ( 𝐹𝑝 ) ∧ ( 𝐹𝑏 ) = ( 𝐹𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) )
imasrhm.w ( 𝜑𝑊 ∈ Ring )
Assertion imasrhm ( 𝜑 → ( ( 𝐹s 𝑊 ) ∈ Ring ∧ 𝐹 ∈ ( 𝑊 RingHom ( 𝐹s 𝑊 ) ) ) )

Proof

Step Hyp Ref Expression
1 imasmhm.b 𝐵 = ( Base ‘ 𝑊 )
2 imasmhm.f ( 𝜑𝐹 : 𝐵𝐶 )
3 imasmhm.1 + = ( +g𝑊 )
4 imasmhm.2 ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ∧ ( 𝑝𝐵𝑞𝐵 ) ) → ( ( ( 𝐹𝑎 ) = ( 𝐹𝑝 ) ∧ ( 𝐹𝑏 ) = ( 𝐹𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ) )
5 imasrhm.3 · = ( .r𝑊 )
6 imasrhm.4 ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ∧ ( 𝑝𝐵𝑞𝐵 ) ) → ( ( ( 𝐹𝑎 ) = ( 𝐹𝑝 ) ∧ ( 𝐹𝑏 ) = ( 𝐹𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) )
7 imasrhm.w ( 𝜑𝑊 ∈ Ring )
8 eqidd ( 𝜑 → ( 𝐹s 𝑊 ) = ( 𝐹s 𝑊 ) )
9 1 a1i ( 𝜑𝐵 = ( Base ‘ 𝑊 ) )
10 eqid ( 1r𝑊 ) = ( 1r𝑊 )
11 fimadmfo ( 𝐹 : 𝐵𝐶𝐹 : 𝐵onto→ ( 𝐹𝐵 ) )
12 2 11 syl ( 𝜑𝐹 : 𝐵onto→ ( 𝐹𝐵 ) )
13 8 9 3 5 10 12 4 6 7 imasring ( 𝜑 → ( ( 𝐹s 𝑊 ) ∈ Ring ∧ ( 𝐹 ‘ ( 1r𝑊 ) ) = ( 1r ‘ ( 𝐹s 𝑊 ) ) ) )
14 13 simpld ( 𝜑 → ( 𝐹s 𝑊 ) ∈ Ring )
15 eqid ( 1r ‘ ( 𝐹s 𝑊 ) ) = ( 1r ‘ ( 𝐹s 𝑊 ) )
16 eqid ( .r ‘ ( 𝐹s 𝑊 ) ) = ( .r ‘ ( 𝐹s 𝑊 ) )
17 13 simprd ( 𝜑 → ( 𝐹 ‘ ( 1r𝑊 ) ) = ( 1r ‘ ( 𝐹s 𝑊 ) ) )
18 12 6 8 9 7 5 16 imasmulval ( ( 𝜑𝑥𝐵𝑦𝐵 ) → ( ( 𝐹𝑥 ) ( .r ‘ ( 𝐹s 𝑊 ) ) ( 𝐹𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) )
19 18 3expb ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( ( 𝐹𝑥 ) ( .r ‘ ( 𝐹s 𝑊 ) ) ( 𝐹𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) )
20 19 eqcomd ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹𝑥 ) ( .r ‘ ( 𝐹s 𝑊 ) ) ( 𝐹𝑦 ) ) )
21 eqid ( Base ‘ ( 𝐹s 𝑊 ) ) = ( Base ‘ ( 𝐹s 𝑊 ) )
22 eqid ( +g ‘ ( 𝐹s 𝑊 ) ) = ( +g ‘ ( 𝐹s 𝑊 ) )
23 fof ( 𝐹 : 𝐵onto→ ( 𝐹𝐵 ) → 𝐹 : 𝐵 ⟶ ( 𝐹𝐵 ) )
24 12 23 syl ( 𝜑𝐹 : 𝐵 ⟶ ( 𝐹𝐵 ) )
25 8 9 12 7 imasbas ( 𝜑 → ( 𝐹𝐵 ) = ( Base ‘ ( 𝐹s 𝑊 ) ) )
26 25 feq3d ( 𝜑 → ( 𝐹 : 𝐵 ⟶ ( 𝐹𝐵 ) ↔ 𝐹 : 𝐵 ⟶ ( Base ‘ ( 𝐹s 𝑊 ) ) ) )
27 24 26 mpbid ( 𝜑𝐹 : 𝐵 ⟶ ( Base ‘ ( 𝐹s 𝑊 ) ) )
28 12 4 8 9 7 3 22 imasaddval ( ( 𝜑𝑥𝐵𝑦𝐵 ) → ( ( 𝐹𝑥 ) ( +g ‘ ( 𝐹s 𝑊 ) ) ( 𝐹𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) )
29 28 3expb ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( ( 𝐹𝑥 ) ( +g ‘ ( 𝐹s 𝑊 ) ) ( 𝐹𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) )
30 29 eqcomd ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹𝑥 ) ( +g ‘ ( 𝐹s 𝑊 ) ) ( 𝐹𝑦 ) ) )
31 1 10 15 5 16 7 14 17 20 21 3 22 27 30 isrhmd ( 𝜑𝐹 ∈ ( 𝑊 RingHom ( 𝐹s 𝑊 ) ) )
32 14 31 jca ( 𝜑 → ( ( 𝐹s 𝑊 ) ∈ Ring ∧ 𝐹 ∈ ( 𝑊 RingHom ( 𝐹s 𝑊 ) ) ) )