Step |
Hyp |
Ref |
Expression |
1 |
|
imasmhm.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
2 |
|
imasmhm.f |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐶 ) |
3 |
|
imasmhm.1 |
⊢ + = ( +g ‘ 𝑊 ) |
4 |
|
imasmhm.2 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ) ) |
5 |
|
imasrhm.3 |
⊢ · = ( .r ‘ 𝑊 ) |
6 |
|
imasrhm.4 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) |
7 |
|
imasrhm.w |
⊢ ( 𝜑 → 𝑊 ∈ Ring ) |
8 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐹 “s 𝑊 ) = ( 𝐹 “s 𝑊 ) ) |
9 |
1
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑊 ) ) |
10 |
|
eqid |
⊢ ( 1r ‘ 𝑊 ) = ( 1r ‘ 𝑊 ) |
11 |
|
fimadmfo |
⊢ ( 𝐹 : 𝐵 ⟶ 𝐶 → 𝐹 : 𝐵 –onto→ ( 𝐹 “ 𝐵 ) ) |
12 |
2 11
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐵 –onto→ ( 𝐹 “ 𝐵 ) ) |
13 |
8 9 3 5 10 12 4 6 7
|
imasring |
⊢ ( 𝜑 → ( ( 𝐹 “s 𝑊 ) ∈ Ring ∧ ( 𝐹 ‘ ( 1r ‘ 𝑊 ) ) = ( 1r ‘ ( 𝐹 “s 𝑊 ) ) ) ) |
14 |
13
|
simpld |
⊢ ( 𝜑 → ( 𝐹 “s 𝑊 ) ∈ Ring ) |
15 |
|
eqid |
⊢ ( 1r ‘ ( 𝐹 “s 𝑊 ) ) = ( 1r ‘ ( 𝐹 “s 𝑊 ) ) |
16 |
|
eqid |
⊢ ( .r ‘ ( 𝐹 “s 𝑊 ) ) = ( .r ‘ ( 𝐹 “s 𝑊 ) ) |
17 |
13
|
simprd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 1r ‘ 𝑊 ) ) = ( 1r ‘ ( 𝐹 “s 𝑊 ) ) ) |
18 |
12 6 8 9 7 5 16
|
imasmulval |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ ( 𝐹 “s 𝑊 ) ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ) |
19 |
18
|
3expb |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ ( 𝐹 “s 𝑊 ) ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ) |
20 |
19
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ ( 𝐹 “s 𝑊 ) ) ( 𝐹 ‘ 𝑦 ) ) ) |
21 |
|
eqid |
⊢ ( Base ‘ ( 𝐹 “s 𝑊 ) ) = ( Base ‘ ( 𝐹 “s 𝑊 ) ) |
22 |
|
eqid |
⊢ ( +g ‘ ( 𝐹 “s 𝑊 ) ) = ( +g ‘ ( 𝐹 “s 𝑊 ) ) |
23 |
|
fof |
⊢ ( 𝐹 : 𝐵 –onto→ ( 𝐹 “ 𝐵 ) → 𝐹 : 𝐵 ⟶ ( 𝐹 “ 𝐵 ) ) |
24 |
12 23
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ( 𝐹 “ 𝐵 ) ) |
25 |
8 9 12 7
|
imasbas |
⊢ ( 𝜑 → ( 𝐹 “ 𝐵 ) = ( Base ‘ ( 𝐹 “s 𝑊 ) ) ) |
26 |
25
|
feq3d |
⊢ ( 𝜑 → ( 𝐹 : 𝐵 ⟶ ( 𝐹 “ 𝐵 ) ↔ 𝐹 : 𝐵 ⟶ ( Base ‘ ( 𝐹 “s 𝑊 ) ) ) ) |
27 |
24 26
|
mpbid |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ( Base ‘ ( 𝐹 “s 𝑊 ) ) ) |
28 |
12 4 8 9 7 3 22
|
imasaddval |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ ( 𝐹 “s 𝑊 ) ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ) |
29 |
28
|
3expb |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ ( 𝐹 “s 𝑊 ) ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ) |
30 |
29
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ ( 𝐹 “s 𝑊 ) ) ( 𝐹 ‘ 𝑦 ) ) ) |
31 |
1 10 15 5 16 7 14 17 20 21 3 22 27 30
|
isrhmd |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑊 RingHom ( 𝐹 “s 𝑊 ) ) ) |
32 |
14 31
|
jca |
⊢ ( 𝜑 → ( ( 𝐹 “s 𝑊 ) ∈ Ring ∧ 𝐹 ∈ ( 𝑊 RingHom ( 𝐹 “s 𝑊 ) ) ) ) |