Step |
Hyp |
Ref |
Expression |
1 |
|
imasring.u |
⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) |
2 |
|
imasring.v |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) |
3 |
|
imasring.p |
⊢ + = ( +g ‘ 𝑅 ) |
4 |
|
imasring.t |
⊢ · = ( .r ‘ 𝑅 ) |
5 |
|
imasring.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
6 |
|
imasring.f |
⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) |
7 |
|
imasring.e1 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ) ) |
8 |
|
imasring.e2 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) |
9 |
|
imasring.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
10 |
1 2 6 9
|
imasbas |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑈 ) ) |
11 |
|
eqidd |
⊢ ( 𝜑 → ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) ) |
12 |
|
eqidd |
⊢ ( 𝜑 → ( .r ‘ 𝑈 ) = ( .r ‘ 𝑈 ) ) |
13 |
3
|
a1i |
⊢ ( 𝜑 → + = ( +g ‘ 𝑅 ) ) |
14 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
15 |
9 14
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
16 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
17 |
1 2 13 6 7 15 16
|
imasgrp |
⊢ ( 𝜑 → ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑈 ) ) ) |
18 |
17
|
simpld |
⊢ ( 𝜑 → 𝑈 ∈ Grp ) |
19 |
|
eqid |
⊢ ( .r ‘ 𝑈 ) = ( .r ‘ 𝑈 ) |
20 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → 𝑅 ∈ Ring ) |
21 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → 𝑢 ∈ 𝑉 ) |
22 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → 𝑉 = ( Base ‘ 𝑅 ) ) |
23 |
21 22
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → 𝑢 ∈ ( Base ‘ 𝑅 ) ) |
24 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → 𝑣 ∈ 𝑉 ) |
25 |
24 22
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → 𝑣 ∈ ( Base ‘ 𝑅 ) ) |
26 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
27 |
26 4
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑢 · 𝑣 ) ∈ ( Base ‘ 𝑅 ) ) |
28 |
20 23 25 27
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → ( 𝑢 · 𝑣 ) ∈ ( Base ‘ 𝑅 ) ) |
29 |
28 22
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → ( 𝑢 · 𝑣 ) ∈ 𝑉 ) |
30 |
29
|
caovclg |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( 𝑝 · 𝑞 ) ∈ 𝑉 ) |
31 |
6 8 1 2 9 4 19 30
|
imasmulf |
⊢ ( 𝜑 → ( .r ‘ 𝑈 ) : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |
32 |
|
fovrn |
⊢ ( ( ( .r ‘ 𝑈 ) : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) → ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ∈ 𝐵 ) |
33 |
31 32
|
syl3an1 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) → ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ∈ 𝐵 ) |
34 |
|
forn |
⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → ran 𝐹 = 𝐵 ) |
35 |
6 34
|
syl |
⊢ ( 𝜑 → ran 𝐹 = 𝐵 ) |
36 |
35
|
eleq2d |
⊢ ( 𝜑 → ( 𝑢 ∈ ran 𝐹 ↔ 𝑢 ∈ 𝐵 ) ) |
37 |
35
|
eleq2d |
⊢ ( 𝜑 → ( 𝑣 ∈ ran 𝐹 ↔ 𝑣 ∈ 𝐵 ) ) |
38 |
35
|
eleq2d |
⊢ ( 𝜑 → ( 𝑤 ∈ ran 𝐹 ↔ 𝑤 ∈ 𝐵 ) ) |
39 |
36 37 38
|
3anbi123d |
⊢ ( 𝜑 → ( ( 𝑢 ∈ ran 𝐹 ∧ 𝑣 ∈ ran 𝐹 ∧ 𝑤 ∈ ran 𝐹 ) ↔ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ) |
40 |
|
fofn |
⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → 𝐹 Fn 𝑉 ) |
41 |
6 40
|
syl |
⊢ ( 𝜑 → 𝐹 Fn 𝑉 ) |
42 |
|
fvelrnb |
⊢ ( 𝐹 Fn 𝑉 → ( 𝑢 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 ) ) |
43 |
|
fvelrnb |
⊢ ( 𝐹 Fn 𝑉 → ( 𝑣 ∈ ran 𝐹 ↔ ∃ 𝑦 ∈ 𝑉 ( 𝐹 ‘ 𝑦 ) = 𝑣 ) ) |
44 |
|
fvelrnb |
⊢ ( 𝐹 Fn 𝑉 → ( 𝑤 ∈ ran 𝐹 ↔ ∃ 𝑧 ∈ 𝑉 ( 𝐹 ‘ 𝑧 ) = 𝑤 ) ) |
45 |
42 43 44
|
3anbi123d |
⊢ ( 𝐹 Fn 𝑉 → ( ( 𝑢 ∈ ran 𝐹 ∧ 𝑣 ∈ ran 𝐹 ∧ 𝑤 ∈ ran 𝐹 ) ↔ ( ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ∃ 𝑦 ∈ 𝑉 ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ∃ 𝑧 ∈ 𝑉 ( 𝐹 ‘ 𝑧 ) = 𝑤 ) ) ) |
46 |
41 45
|
syl |
⊢ ( 𝜑 → ( ( 𝑢 ∈ ran 𝐹 ∧ 𝑣 ∈ ran 𝐹 ∧ 𝑤 ∈ ran 𝐹 ) ↔ ( ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ∃ 𝑦 ∈ 𝑉 ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ∃ 𝑧 ∈ 𝑉 ( 𝐹 ‘ 𝑧 ) = 𝑤 ) ) ) |
47 |
39 46
|
bitr3d |
⊢ ( 𝜑 → ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ↔ ( ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ∃ 𝑦 ∈ 𝑉 ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ∃ 𝑧 ∈ 𝑉 ( 𝐹 ‘ 𝑧 ) = 𝑤 ) ) ) |
48 |
|
3reeanv |
⊢ ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) ↔ ( ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ∃ 𝑦 ∈ 𝑉 ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ∃ 𝑧 ∈ 𝑉 ( 𝐹 ‘ 𝑧 ) = 𝑤 ) ) |
49 |
47 48
|
bitr4di |
⊢ ( 𝜑 → ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) ) ) |
50 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑅 ∈ Ring ) |
51 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → 𝑥 ∈ 𝑉 ) |
52 |
2
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → 𝑉 = ( Base ‘ 𝑅 ) ) |
53 |
51 52
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
54 |
53
|
3adant3r3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
55 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → 𝑦 ∈ 𝑉 ) |
56 |
55 52
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
57 |
56
|
3adant3r3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
58 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑧 ∈ 𝑉 ) |
59 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑉 = ( Base ‘ 𝑅 ) ) |
60 |
58 59
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑧 ∈ ( Base ‘ 𝑅 ) ) |
61 |
26 4
|
ringass |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑥 · 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) |
62 |
50 54 57 60 61
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑥 · 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) |
63 |
62
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) · 𝑧 ) ) = ( 𝐹 ‘ ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) ) |
64 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝜑 ) |
65 |
29
|
caovclg |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝑉 ) |
66 |
65
|
3adantr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝑉 ) |
67 |
6 8 1 2 9 4 19
|
imasmulval |
⊢ ( ( 𝜑 ∧ ( 𝑥 · 𝑦 ) ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) · 𝑧 ) ) ) |
68 |
64 66 58 67
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) · 𝑧 ) ) ) |
69 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑥 ∈ 𝑉 ) |
70 |
29
|
caovclg |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑦 · 𝑧 ) ∈ 𝑉 ) |
71 |
70
|
3adantr1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑦 · 𝑧 ) ∈ 𝑉 ) |
72 |
6 8 1 2 9 4 19
|
imasmulval |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ( 𝑦 · 𝑧 ) ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) = ( 𝐹 ‘ ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) ) |
73 |
64 69 71 72
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) = ( 𝐹 ‘ ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) ) |
74 |
63 68 73
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) ) |
75 |
6 8 1 2 9 4 19
|
imasmulval |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ) |
76 |
75
|
3adant3r3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ) |
77 |
76
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) |
78 |
6 8 1 2 9 4 19
|
imasmulval |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) |
79 |
78
|
3adant3r1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) |
80 |
79
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) ) |
81 |
74 77 80
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) ) |
82 |
|
simp1 |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( 𝐹 ‘ 𝑥 ) = 𝑢 ) |
83 |
|
simp2 |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( 𝐹 ‘ 𝑦 ) = 𝑣 ) |
84 |
82 83
|
oveq12d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ) |
85 |
|
simp3 |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( 𝐹 ‘ 𝑧 ) = 𝑤 ) |
86 |
84 85
|
oveq12d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) ) |
87 |
83 85
|
oveq12d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) |
88 |
82 87
|
oveq12d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) |
89 |
86 88
|
eqeq12d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) ↔ ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
90 |
81 89
|
syl5ibcom |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
91 |
90
|
3exp2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑉 → ( 𝑦 ∈ 𝑉 → ( 𝑧 ∈ 𝑉 → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) ) ) ) |
92 |
91
|
imp32 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑧 ∈ 𝑉 → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) ) |
93 |
92
|
rexlimdv |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( ∃ 𝑧 ∈ 𝑉 ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
94 |
93
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
95 |
49 94
|
sylbid |
⊢ ( 𝜑 → ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) → ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
96 |
95
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) |
97 |
26 3 4
|
ringdi |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) |
98 |
50 54 57 60 97
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) |
99 |
98
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝐹 ‘ ( 𝑥 · ( 𝑦 + 𝑧 ) ) ) = ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) ) |
100 |
26 3
|
ringacl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑢 + 𝑣 ) ∈ ( Base ‘ 𝑅 ) ) |
101 |
20 23 25 100
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → ( 𝑢 + 𝑣 ) ∈ ( Base ‘ 𝑅 ) ) |
102 |
101 22
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → ( 𝑢 + 𝑣 ) ∈ 𝑉 ) |
103 |
102
|
caovclg |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑦 + 𝑧 ) ∈ 𝑉 ) |
104 |
103
|
3adantr1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑦 + 𝑧 ) ∈ 𝑉 ) |
105 |
6 8 1 2 9 4 19
|
imasmulval |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ( 𝑦 + 𝑧 ) ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) = ( 𝐹 ‘ ( 𝑥 · ( 𝑦 + 𝑧 ) ) ) ) |
106 |
64 69 104 105
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) = ( 𝐹 ‘ ( 𝑥 · ( 𝑦 + 𝑧 ) ) ) ) |
107 |
29
|
caovclg |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑥 · 𝑧 ) ∈ 𝑉 ) |
108 |
107
|
3adantr2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑥 · 𝑧 ) ∈ 𝑉 ) |
109 |
|
eqid |
⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) |
110 |
6 7 1 2 9 3 109
|
imasaddval |
⊢ ( ( 𝜑 ∧ ( 𝑥 · 𝑦 ) ∈ 𝑉 ∧ ( 𝑥 · 𝑧 ) ∈ 𝑉 ) → ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ) = ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) ) |
111 |
64 66 108 110
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ) = ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) ) |
112 |
99 106 111
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) = ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ) ) |
113 |
6 7 1 2 9 3 109
|
imasaddval |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) |
114 |
113
|
3adant3r1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) |
115 |
114
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) ) |
116 |
6 8 1 2 9 4 19
|
imasmulval |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ) |
117 |
116
|
3adant3r2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ) |
118 |
76 117
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ) ) |
119 |
112 115 118
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) ) |
120 |
83 85
|
oveq12d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) |
121 |
82 120
|
oveq12d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) ) |
122 |
82 85
|
oveq12d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ) |
123 |
84 122
|
oveq12d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ) ) |
124 |
121 123
|
eqeq12d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) ↔ ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
125 |
119 124
|
syl5ibcom |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
126 |
125
|
3exp2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑉 → ( 𝑦 ∈ 𝑉 → ( 𝑧 ∈ 𝑉 → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) ) ) ) |
127 |
126
|
imp32 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑧 ∈ 𝑉 → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) ) |
128 |
127
|
rexlimdv |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( ∃ 𝑧 ∈ 𝑉 ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
129 |
128
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
130 |
49 129
|
sylbid |
⊢ ( 𝜑 → ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) → ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
131 |
130
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ) ) |
132 |
26 3 4
|
ringdir |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
133 |
50 54 57 60 132
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
134 |
133
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝐹 ‘ ( ( 𝑥 + 𝑦 ) · 𝑧 ) ) = ( 𝐹 ‘ ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) |
135 |
102
|
caovclg |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑉 ) |
136 |
135
|
3adantr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑉 ) |
137 |
6 8 1 2 9 4 19
|
imasmulval |
⊢ ( ( 𝜑 ∧ ( 𝑥 + 𝑦 ) ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( ( 𝑥 + 𝑦 ) · 𝑧 ) ) ) |
138 |
64 136 58 137
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( ( 𝑥 + 𝑦 ) · 𝑧 ) ) ) |
139 |
6 7 1 2 9 3 109
|
imasaddval |
⊢ ( ( 𝜑 ∧ ( 𝑥 · 𝑧 ) ∈ 𝑉 ∧ ( 𝑦 · 𝑧 ) ∈ 𝑉 ) → ( ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) = ( 𝐹 ‘ ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) |
140 |
64 108 71 139
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) = ( 𝐹 ‘ ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) |
141 |
134 138 140
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) ) |
142 |
6 7 1 2 9 3 109
|
imasaddval |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ) |
143 |
142
|
3adant3r3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ) |
144 |
143
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) |
145 |
117 79
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) ) |
146 |
141 144 145
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) ) |
147 |
82 83
|
oveq12d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ) |
148 |
147 85
|
oveq12d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) ) |
149 |
122 87
|
oveq12d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ( +g ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) |
150 |
148 149
|
eqeq12d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) ↔ ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ( +g ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
151 |
146 150
|
syl5ibcom |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ( +g ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
152 |
151
|
3exp2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑉 → ( 𝑦 ∈ 𝑉 → ( 𝑧 ∈ 𝑉 → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ( +g ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) ) ) ) |
153 |
152
|
imp32 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑧 ∈ 𝑉 → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ( +g ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) ) |
154 |
153
|
rexlimdv |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( ∃ 𝑧 ∈ 𝑉 ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ( +g ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
155 |
154
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ( +g ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
156 |
49 155
|
sylbid |
⊢ ( 𝜑 → ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) → ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ( +g ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
157 |
156
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ( +g ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) |
158 |
|
fof |
⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → 𝐹 : 𝑉 ⟶ 𝐵 ) |
159 |
6 158
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑉 ⟶ 𝐵 ) |
160 |
26 5
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → 1 ∈ ( Base ‘ 𝑅 ) ) |
161 |
9 160
|
syl |
⊢ ( 𝜑 → 1 ∈ ( Base ‘ 𝑅 ) ) |
162 |
161 2
|
eleqtrrd |
⊢ ( 𝜑 → 1 ∈ 𝑉 ) |
163 |
159 162
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) ∈ 𝐵 ) |
164 |
41 42
|
syl |
⊢ ( 𝜑 → ( 𝑢 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 ) ) |
165 |
36 164
|
bitr3d |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝐵 ↔ ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 ) ) |
166 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝜑 ) |
167 |
162
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 1 ∈ 𝑉 ) |
168 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ∈ 𝑉 ) |
169 |
6 8 1 2 9 4 19
|
imasmulval |
⊢ ( ( 𝜑 ∧ 1 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ ( 1 · 𝑥 ) ) ) |
170 |
166 167 168 169
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ ( 1 · 𝑥 ) ) ) |
171 |
2
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑉 ↔ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ) |
172 |
171
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
173 |
26 4 5
|
ringlidm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 1 · 𝑥 ) = 𝑥 ) |
174 |
9 172 173
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 1 · 𝑥 ) = 𝑥 ) |
175 |
174
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝐹 ‘ ( 1 · 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
176 |
170 175
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
177 |
|
oveq2 |
⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) 𝑢 ) ) |
178 |
|
id |
⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( 𝐹 ‘ 𝑥 ) = 𝑢 ) |
179 |
177 178
|
eqeq12d |
⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ↔ ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) 𝑢 ) = 𝑢 ) ) |
180 |
176 179
|
syl5ibcom |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) 𝑢 ) = 𝑢 ) ) |
181 |
180
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) 𝑢 ) = 𝑢 ) ) |
182 |
165 181
|
sylbid |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝐵 → ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) 𝑢 ) = 𝑢 ) ) |
183 |
182
|
imp |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐵 ) → ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) 𝑢 ) = 𝑢 ) |
184 |
6 8 1 2 9 4 19
|
imasmulval |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = ( 𝐹 ‘ ( 𝑥 · 1 ) ) ) |
185 |
167 184
|
mpd3an3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = ( 𝐹 ‘ ( 𝑥 · 1 ) ) ) |
186 |
26 4 5
|
ringridm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 · 1 ) = 𝑥 ) |
187 |
9 172 186
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝑥 · 1 ) = 𝑥 ) |
188 |
187
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝐹 ‘ ( 𝑥 · 1 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
189 |
185 188
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
190 |
|
oveq1 |
⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = ( 𝑢 ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) ) |
191 |
190 178
|
eqeq12d |
⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = ( 𝐹 ‘ 𝑥 ) ↔ ( 𝑢 ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = 𝑢 ) ) |
192 |
189 191
|
syl5ibcom |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( 𝑢 ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = 𝑢 ) ) |
193 |
192
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( 𝑢 ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = 𝑢 ) ) |
194 |
165 193
|
sylbid |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝐵 → ( 𝑢 ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = 𝑢 ) ) |
195 |
194
|
imp |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐵 ) → ( 𝑢 ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = 𝑢 ) |
196 |
10 11 12 18 33 96 131 157 163 183 195
|
isringd |
⊢ ( 𝜑 → 𝑈 ∈ Ring ) |
197 |
163 10
|
eleqtrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) ∈ ( Base ‘ 𝑈 ) ) |
198 |
10
|
eleq2d |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝐵 ↔ 𝑢 ∈ ( Base ‘ 𝑈 ) ) ) |
199 |
182 194
|
jcad |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝐵 → ( ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) 𝑢 ) = 𝑢 ∧ ( 𝑢 ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = 𝑢 ) ) ) |
200 |
198 199
|
sylbird |
⊢ ( 𝜑 → ( 𝑢 ∈ ( Base ‘ 𝑈 ) → ( ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) 𝑢 ) = 𝑢 ∧ ( 𝑢 ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = 𝑢 ) ) ) |
201 |
200
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑢 ∈ ( Base ‘ 𝑈 ) ( ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) 𝑢 ) = 𝑢 ∧ ( 𝑢 ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = 𝑢 ) ) |
202 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
203 |
|
eqid |
⊢ ( 1r ‘ 𝑈 ) = ( 1r ‘ 𝑈 ) |
204 |
202 19 203
|
isringid |
⊢ ( 𝑈 ∈ Ring → ( ( ( 𝐹 ‘ 1 ) ∈ ( Base ‘ 𝑈 ) ∧ ∀ 𝑢 ∈ ( Base ‘ 𝑈 ) ( ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) 𝑢 ) = 𝑢 ∧ ( 𝑢 ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = 𝑢 ) ) ↔ ( 1r ‘ 𝑈 ) = ( 𝐹 ‘ 1 ) ) ) |
205 |
196 204
|
syl |
⊢ ( 𝜑 → ( ( ( 𝐹 ‘ 1 ) ∈ ( Base ‘ 𝑈 ) ∧ ∀ 𝑢 ∈ ( Base ‘ 𝑈 ) ( ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) 𝑢 ) = 𝑢 ∧ ( 𝑢 ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = 𝑢 ) ) ↔ ( 1r ‘ 𝑈 ) = ( 𝐹 ‘ 1 ) ) ) |
206 |
197 201 205
|
mpbi2and |
⊢ ( 𝜑 → ( 1r ‘ 𝑈 ) = ( 𝐹 ‘ 1 ) ) |
207 |
206
|
eqcomd |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = ( 1r ‘ 𝑈 ) ) |
208 |
196 207
|
jca |
⊢ ( 𝜑 → ( 𝑈 ∈ Ring ∧ ( 𝐹 ‘ 1 ) = ( 1r ‘ 𝑈 ) ) ) |