| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imasring.u |
⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) |
| 2 |
|
imasring.v |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) |
| 3 |
|
imasring.p |
⊢ + = ( +g ‘ 𝑅 ) |
| 4 |
|
imasring.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 5 |
|
imasring.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 6 |
|
imasring.f |
⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) |
| 7 |
|
imasring.e1 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ) ) |
| 8 |
|
imasring.e2 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) |
| 9 |
|
imasring.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 10 |
1 2 6 9
|
imasbas |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑈 ) ) |
| 11 |
|
eqidd |
⊢ ( 𝜑 → ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) ) |
| 12 |
|
eqidd |
⊢ ( 𝜑 → ( .r ‘ 𝑈 ) = ( .r ‘ 𝑈 ) ) |
| 13 |
3
|
a1i |
⊢ ( 𝜑 → + = ( +g ‘ 𝑅 ) ) |
| 14 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
| 15 |
9 14
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 16 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 17 |
1 2 13 6 7 15 16
|
imasgrp |
⊢ ( 𝜑 → ( 𝑈 ∈ Grp ∧ ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑈 ) ) ) |
| 18 |
17
|
simpld |
⊢ ( 𝜑 → 𝑈 ∈ Grp ) |
| 19 |
|
eqid |
⊢ ( .r ‘ 𝑈 ) = ( .r ‘ 𝑈 ) |
| 20 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → 𝑅 ∈ Ring ) |
| 21 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → 𝑢 ∈ 𝑉 ) |
| 22 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → 𝑉 = ( Base ‘ 𝑅 ) ) |
| 23 |
21 22
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → 𝑢 ∈ ( Base ‘ 𝑅 ) ) |
| 24 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → 𝑣 ∈ 𝑉 ) |
| 25 |
24 22
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → 𝑣 ∈ ( Base ‘ 𝑅 ) ) |
| 26 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 27 |
26 4
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑢 · 𝑣 ) ∈ ( Base ‘ 𝑅 ) ) |
| 28 |
20 23 25 27
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → ( 𝑢 · 𝑣 ) ∈ ( Base ‘ 𝑅 ) ) |
| 29 |
28 22
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → ( 𝑢 · 𝑣 ) ∈ 𝑉 ) |
| 30 |
29
|
caovclg |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( 𝑝 · 𝑞 ) ∈ 𝑉 ) |
| 31 |
6 8 1 2 9 4 19 30
|
imasmulf |
⊢ ( 𝜑 → ( .r ‘ 𝑈 ) : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |
| 32 |
|
fovcdm |
⊢ ( ( ( .r ‘ 𝑈 ) : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) → ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ∈ 𝐵 ) |
| 33 |
31 32
|
syl3an1 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) → ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ∈ 𝐵 ) |
| 34 |
|
forn |
⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → ran 𝐹 = 𝐵 ) |
| 35 |
6 34
|
syl |
⊢ ( 𝜑 → ran 𝐹 = 𝐵 ) |
| 36 |
35
|
eleq2d |
⊢ ( 𝜑 → ( 𝑢 ∈ ran 𝐹 ↔ 𝑢 ∈ 𝐵 ) ) |
| 37 |
35
|
eleq2d |
⊢ ( 𝜑 → ( 𝑣 ∈ ran 𝐹 ↔ 𝑣 ∈ 𝐵 ) ) |
| 38 |
35
|
eleq2d |
⊢ ( 𝜑 → ( 𝑤 ∈ ran 𝐹 ↔ 𝑤 ∈ 𝐵 ) ) |
| 39 |
36 37 38
|
3anbi123d |
⊢ ( 𝜑 → ( ( 𝑢 ∈ ran 𝐹 ∧ 𝑣 ∈ ran 𝐹 ∧ 𝑤 ∈ ran 𝐹 ) ↔ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ) |
| 40 |
|
fofn |
⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → 𝐹 Fn 𝑉 ) |
| 41 |
6 40
|
syl |
⊢ ( 𝜑 → 𝐹 Fn 𝑉 ) |
| 42 |
|
fvelrnb |
⊢ ( 𝐹 Fn 𝑉 → ( 𝑢 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 ) ) |
| 43 |
|
fvelrnb |
⊢ ( 𝐹 Fn 𝑉 → ( 𝑣 ∈ ran 𝐹 ↔ ∃ 𝑦 ∈ 𝑉 ( 𝐹 ‘ 𝑦 ) = 𝑣 ) ) |
| 44 |
|
fvelrnb |
⊢ ( 𝐹 Fn 𝑉 → ( 𝑤 ∈ ran 𝐹 ↔ ∃ 𝑧 ∈ 𝑉 ( 𝐹 ‘ 𝑧 ) = 𝑤 ) ) |
| 45 |
42 43 44
|
3anbi123d |
⊢ ( 𝐹 Fn 𝑉 → ( ( 𝑢 ∈ ran 𝐹 ∧ 𝑣 ∈ ran 𝐹 ∧ 𝑤 ∈ ran 𝐹 ) ↔ ( ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ∃ 𝑦 ∈ 𝑉 ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ∃ 𝑧 ∈ 𝑉 ( 𝐹 ‘ 𝑧 ) = 𝑤 ) ) ) |
| 46 |
41 45
|
syl |
⊢ ( 𝜑 → ( ( 𝑢 ∈ ran 𝐹 ∧ 𝑣 ∈ ran 𝐹 ∧ 𝑤 ∈ ran 𝐹 ) ↔ ( ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ∃ 𝑦 ∈ 𝑉 ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ∃ 𝑧 ∈ 𝑉 ( 𝐹 ‘ 𝑧 ) = 𝑤 ) ) ) |
| 47 |
39 46
|
bitr3d |
⊢ ( 𝜑 → ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ↔ ( ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ∃ 𝑦 ∈ 𝑉 ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ∃ 𝑧 ∈ 𝑉 ( 𝐹 ‘ 𝑧 ) = 𝑤 ) ) ) |
| 48 |
|
3reeanv |
⊢ ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) ↔ ( ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ∃ 𝑦 ∈ 𝑉 ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ∃ 𝑧 ∈ 𝑉 ( 𝐹 ‘ 𝑧 ) = 𝑤 ) ) |
| 49 |
47 48
|
bitr4di |
⊢ ( 𝜑 → ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) ) ) |
| 50 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑅 ∈ Ring ) |
| 51 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → 𝑥 ∈ 𝑉 ) |
| 52 |
2
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → 𝑉 = ( Base ‘ 𝑅 ) ) |
| 53 |
51 52
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 54 |
53
|
3adant3r3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 55 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → 𝑦 ∈ 𝑉 ) |
| 56 |
55 52
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
| 57 |
56
|
3adant3r3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
| 58 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑧 ∈ 𝑉 ) |
| 59 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑉 = ( Base ‘ 𝑅 ) ) |
| 60 |
58 59
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑧 ∈ ( Base ‘ 𝑅 ) ) |
| 61 |
26 4
|
ringass |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑥 · 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) |
| 62 |
50 54 57 60 61
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑥 · 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) |
| 63 |
62
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) · 𝑧 ) ) = ( 𝐹 ‘ ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) ) |
| 64 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝜑 ) |
| 65 |
29
|
caovclg |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝑉 ) |
| 66 |
65
|
3adantr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝑉 ) |
| 67 |
6 8 1 2 9 4 19
|
imasmulval |
⊢ ( ( 𝜑 ∧ ( 𝑥 · 𝑦 ) ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) · 𝑧 ) ) ) |
| 68 |
64 66 58 67
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) · 𝑧 ) ) ) |
| 69 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑥 ∈ 𝑉 ) |
| 70 |
29
|
caovclg |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑦 · 𝑧 ) ∈ 𝑉 ) |
| 71 |
70
|
3adantr1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑦 · 𝑧 ) ∈ 𝑉 ) |
| 72 |
6 8 1 2 9 4 19
|
imasmulval |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ( 𝑦 · 𝑧 ) ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) = ( 𝐹 ‘ ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) ) |
| 73 |
64 69 71 72
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) = ( 𝐹 ‘ ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) ) |
| 74 |
63 68 73
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) ) |
| 75 |
6 8 1 2 9 4 19
|
imasmulval |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ) |
| 76 |
75
|
3adant3r3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ) |
| 77 |
76
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) |
| 78 |
6 8 1 2 9 4 19
|
imasmulval |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) |
| 79 |
78
|
3adant3r1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) |
| 80 |
79
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) ) |
| 81 |
74 77 80
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 82 |
|
simp1 |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( 𝐹 ‘ 𝑥 ) = 𝑢 ) |
| 83 |
|
simp2 |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( 𝐹 ‘ 𝑦 ) = 𝑣 ) |
| 84 |
82 83
|
oveq12d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ) |
| 85 |
|
simp3 |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( 𝐹 ‘ 𝑧 ) = 𝑤 ) |
| 86 |
84 85
|
oveq12d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) ) |
| 87 |
83 85
|
oveq12d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) |
| 88 |
82 87
|
oveq12d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) |
| 89 |
86 88
|
eqeq12d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) ↔ ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 90 |
81 89
|
syl5ibcom |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 91 |
90
|
3exp2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑉 → ( 𝑦 ∈ 𝑉 → ( 𝑧 ∈ 𝑉 → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) ) ) ) |
| 92 |
91
|
imp32 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑧 ∈ 𝑉 → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) ) |
| 93 |
92
|
rexlimdv |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( ∃ 𝑧 ∈ 𝑉 ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 94 |
93
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 95 |
49 94
|
sylbid |
⊢ ( 𝜑 → ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) → ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 96 |
95
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) |
| 97 |
26 3 4
|
ringdi |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) |
| 98 |
50 54 57 60 97
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) |
| 99 |
98
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝐹 ‘ ( 𝑥 · ( 𝑦 + 𝑧 ) ) ) = ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) ) |
| 100 |
26 3
|
ringacl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑢 + 𝑣 ) ∈ ( Base ‘ 𝑅 ) ) |
| 101 |
20 23 25 100
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → ( 𝑢 + 𝑣 ) ∈ ( Base ‘ 𝑅 ) ) |
| 102 |
101 22
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → ( 𝑢 + 𝑣 ) ∈ 𝑉 ) |
| 103 |
102
|
caovclg |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑦 + 𝑧 ) ∈ 𝑉 ) |
| 104 |
103
|
3adantr1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑦 + 𝑧 ) ∈ 𝑉 ) |
| 105 |
6 8 1 2 9 4 19
|
imasmulval |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ( 𝑦 + 𝑧 ) ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) = ( 𝐹 ‘ ( 𝑥 · ( 𝑦 + 𝑧 ) ) ) ) |
| 106 |
64 69 104 105
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) = ( 𝐹 ‘ ( 𝑥 · ( 𝑦 + 𝑧 ) ) ) ) |
| 107 |
29
|
caovclg |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑥 · 𝑧 ) ∈ 𝑉 ) |
| 108 |
107
|
3adantr2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑥 · 𝑧 ) ∈ 𝑉 ) |
| 109 |
|
eqid |
⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) |
| 110 |
6 7 1 2 9 3 109
|
imasaddval |
⊢ ( ( 𝜑 ∧ ( 𝑥 · 𝑦 ) ∈ 𝑉 ∧ ( 𝑥 · 𝑧 ) ∈ 𝑉 ) → ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ) = ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) ) |
| 111 |
64 66 108 110
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ) = ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) ) |
| 112 |
99 106 111
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) = ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ) ) |
| 113 |
6 7 1 2 9 3 109
|
imasaddval |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) |
| 114 |
113
|
3adant3r1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) |
| 115 |
114
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) ) |
| 116 |
6 8 1 2 9 4 19
|
imasmulval |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ) |
| 117 |
116
|
3adant3r2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ) |
| 118 |
76 117
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ) ) |
| 119 |
112 115 118
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 120 |
83 85
|
oveq12d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) |
| 121 |
82 120
|
oveq12d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) ) |
| 122 |
82 85
|
oveq12d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ) |
| 123 |
84 122
|
oveq12d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ) ) |
| 124 |
121 123
|
eqeq12d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) ↔ ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 125 |
119 124
|
syl5ibcom |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 126 |
125
|
3exp2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑉 → ( 𝑦 ∈ 𝑉 → ( 𝑧 ∈ 𝑉 → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) ) ) ) |
| 127 |
126
|
imp32 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑧 ∈ 𝑉 → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) ) |
| 128 |
127
|
rexlimdv |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( ∃ 𝑧 ∈ 𝑉 ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 129 |
128
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 130 |
49 129
|
sylbid |
⊢ ( 𝜑 → ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) → ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 131 |
130
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ) ) |
| 132 |
26 3 4
|
ringdir |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
| 133 |
50 54 57 60 132
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
| 134 |
133
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝐹 ‘ ( ( 𝑥 + 𝑦 ) · 𝑧 ) ) = ( 𝐹 ‘ ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) |
| 135 |
102
|
caovclg |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑉 ) |
| 136 |
135
|
3adantr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑉 ) |
| 137 |
6 8 1 2 9 4 19
|
imasmulval |
⊢ ( ( 𝜑 ∧ ( 𝑥 + 𝑦 ) ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( ( 𝑥 + 𝑦 ) · 𝑧 ) ) ) |
| 138 |
64 136 58 137
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( ( 𝑥 + 𝑦 ) · 𝑧 ) ) ) |
| 139 |
6 7 1 2 9 3 109
|
imasaddval |
⊢ ( ( 𝜑 ∧ ( 𝑥 · 𝑧 ) ∈ 𝑉 ∧ ( 𝑦 · 𝑧 ) ∈ 𝑉 ) → ( ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) = ( 𝐹 ‘ ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) |
| 140 |
64 108 71 139
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) = ( 𝐹 ‘ ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) |
| 141 |
134 138 140
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) ) |
| 142 |
6 7 1 2 9 3 109
|
imasaddval |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ) |
| 143 |
142
|
3adant3r3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ) |
| 144 |
143
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) |
| 145 |
117 79
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) ) |
| 146 |
141 144 145
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 147 |
82 83
|
oveq12d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ) |
| 148 |
147 85
|
oveq12d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) ) |
| 149 |
122 87
|
oveq12d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ( +g ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) |
| 150 |
148 149
|
eqeq12d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) ↔ ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ( +g ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 151 |
146 150
|
syl5ibcom |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ( +g ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 152 |
151
|
3exp2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑉 → ( 𝑦 ∈ 𝑉 → ( 𝑧 ∈ 𝑉 → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ( +g ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) ) ) ) |
| 153 |
152
|
imp32 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑧 ∈ 𝑉 → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ( +g ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) ) |
| 154 |
153
|
rexlimdv |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( ∃ 𝑧 ∈ 𝑉 ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ( +g ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 155 |
154
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ( +g ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 156 |
49 155
|
sylbid |
⊢ ( 𝜑 → ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) → ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ( +g ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 157 |
156
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ( +g ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) |
| 158 |
|
fof |
⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → 𝐹 : 𝑉 ⟶ 𝐵 ) |
| 159 |
6 158
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑉 ⟶ 𝐵 ) |
| 160 |
26 5
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → 1 ∈ ( Base ‘ 𝑅 ) ) |
| 161 |
9 160
|
syl |
⊢ ( 𝜑 → 1 ∈ ( Base ‘ 𝑅 ) ) |
| 162 |
161 2
|
eleqtrrd |
⊢ ( 𝜑 → 1 ∈ 𝑉 ) |
| 163 |
159 162
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) ∈ 𝐵 ) |
| 164 |
41 42
|
syl |
⊢ ( 𝜑 → ( 𝑢 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 ) ) |
| 165 |
36 164
|
bitr3d |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝐵 ↔ ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 ) ) |
| 166 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝜑 ) |
| 167 |
162
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 1 ∈ 𝑉 ) |
| 168 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ∈ 𝑉 ) |
| 169 |
6 8 1 2 9 4 19
|
imasmulval |
⊢ ( ( 𝜑 ∧ 1 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ ( 1 · 𝑥 ) ) ) |
| 170 |
166 167 168 169
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ ( 1 · 𝑥 ) ) ) |
| 171 |
2
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑉 ↔ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ) |
| 172 |
171
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 173 |
26 4 5
|
ringlidm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 1 · 𝑥 ) = 𝑥 ) |
| 174 |
9 172 173
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 1 · 𝑥 ) = 𝑥 ) |
| 175 |
174
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝐹 ‘ ( 1 · 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 176 |
170 175
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 177 |
|
oveq2 |
⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) 𝑢 ) ) |
| 178 |
|
id |
⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( 𝐹 ‘ 𝑥 ) = 𝑢 ) |
| 179 |
177 178
|
eqeq12d |
⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ↔ ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) 𝑢 ) = 𝑢 ) ) |
| 180 |
176 179
|
syl5ibcom |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) 𝑢 ) = 𝑢 ) ) |
| 181 |
180
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) 𝑢 ) = 𝑢 ) ) |
| 182 |
165 181
|
sylbid |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝐵 → ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) 𝑢 ) = 𝑢 ) ) |
| 183 |
182
|
imp |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐵 ) → ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) 𝑢 ) = 𝑢 ) |
| 184 |
6 8 1 2 9 4 19
|
imasmulval |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = ( 𝐹 ‘ ( 𝑥 · 1 ) ) ) |
| 185 |
167 184
|
mpd3an3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = ( 𝐹 ‘ ( 𝑥 · 1 ) ) ) |
| 186 |
26 4 5
|
ringridm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 · 1 ) = 𝑥 ) |
| 187 |
9 172 186
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝑥 · 1 ) = 𝑥 ) |
| 188 |
187
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝐹 ‘ ( 𝑥 · 1 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 189 |
185 188
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 190 |
|
oveq1 |
⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = ( 𝑢 ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) ) |
| 191 |
190 178
|
eqeq12d |
⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = ( 𝐹 ‘ 𝑥 ) ↔ ( 𝑢 ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = 𝑢 ) ) |
| 192 |
189 191
|
syl5ibcom |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( 𝑢 ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = 𝑢 ) ) |
| 193 |
192
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 → ( 𝑢 ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = 𝑢 ) ) |
| 194 |
165 193
|
sylbid |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝐵 → ( 𝑢 ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = 𝑢 ) ) |
| 195 |
194
|
imp |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐵 ) → ( 𝑢 ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = 𝑢 ) |
| 196 |
10 11 12 18 33 96 131 157 163 183 195
|
isringd |
⊢ ( 𝜑 → 𝑈 ∈ Ring ) |
| 197 |
163 10
|
eleqtrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) ∈ ( Base ‘ 𝑈 ) ) |
| 198 |
10
|
eleq2d |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝐵 ↔ 𝑢 ∈ ( Base ‘ 𝑈 ) ) ) |
| 199 |
182 194
|
jcad |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝐵 → ( ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) 𝑢 ) = 𝑢 ∧ ( 𝑢 ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = 𝑢 ) ) ) |
| 200 |
198 199
|
sylbird |
⊢ ( 𝜑 → ( 𝑢 ∈ ( Base ‘ 𝑈 ) → ( ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) 𝑢 ) = 𝑢 ∧ ( 𝑢 ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = 𝑢 ) ) ) |
| 201 |
200
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑢 ∈ ( Base ‘ 𝑈 ) ( ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) 𝑢 ) = 𝑢 ∧ ( 𝑢 ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = 𝑢 ) ) |
| 202 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
| 203 |
|
eqid |
⊢ ( 1r ‘ 𝑈 ) = ( 1r ‘ 𝑈 ) |
| 204 |
202 19 203
|
isringid |
⊢ ( 𝑈 ∈ Ring → ( ( ( 𝐹 ‘ 1 ) ∈ ( Base ‘ 𝑈 ) ∧ ∀ 𝑢 ∈ ( Base ‘ 𝑈 ) ( ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) 𝑢 ) = 𝑢 ∧ ( 𝑢 ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = 𝑢 ) ) ↔ ( 1r ‘ 𝑈 ) = ( 𝐹 ‘ 1 ) ) ) |
| 205 |
196 204
|
syl |
⊢ ( 𝜑 → ( ( ( 𝐹 ‘ 1 ) ∈ ( Base ‘ 𝑈 ) ∧ ∀ 𝑢 ∈ ( Base ‘ 𝑈 ) ( ( ( 𝐹 ‘ 1 ) ( .r ‘ 𝑈 ) 𝑢 ) = 𝑢 ∧ ( 𝑢 ( .r ‘ 𝑈 ) ( 𝐹 ‘ 1 ) ) = 𝑢 ) ) ↔ ( 1r ‘ 𝑈 ) = ( 𝐹 ‘ 1 ) ) ) |
| 206 |
197 201 205
|
mpbi2and |
⊢ ( 𝜑 → ( 1r ‘ 𝑈 ) = ( 𝐹 ‘ 1 ) ) |
| 207 |
206
|
eqcomd |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = ( 1r ‘ 𝑈 ) ) |
| 208 |
196 207
|
jca |
⊢ ( 𝜑 → ( 𝑈 ∈ Ring ∧ ( 𝐹 ‘ 1 ) = ( 1r ‘ 𝑈 ) ) ) |