Metamath Proof Explorer


Theorem imasringf1

Description: The image of a ring under an injection is a ring ( imasmndf1 analog). (Contributed by AV, 27-Feb-2025)

Ref Expression
Hypotheses imasringf1.u 𝑈 = ( 𝐹s 𝑅 )
imasringf1.v 𝑉 = ( Base ‘ 𝑅 )
Assertion imasringf1 ( ( 𝐹 : 𝑉1-1𝐵𝑅 ∈ Ring ) → 𝑈 ∈ Ring )

Proof

Step Hyp Ref Expression
1 imasringf1.u 𝑈 = ( 𝐹s 𝑅 )
2 imasringf1.v 𝑉 = ( Base ‘ 𝑅 )
3 1 a1i ( ( 𝐹 : 𝑉1-1𝐵𝑅 ∈ Ring ) → 𝑈 = ( 𝐹s 𝑅 ) )
4 2 a1i ( ( 𝐹 : 𝑉1-1𝐵𝑅 ∈ Ring ) → 𝑉 = ( Base ‘ 𝑅 ) )
5 eqid ( +g𝑅 ) = ( +g𝑅 )
6 eqid ( .r𝑅 ) = ( .r𝑅 )
7 eqid ( 1r𝑅 ) = ( 1r𝑅 )
8 f1f1orn ( 𝐹 : 𝑉1-1𝐵𝐹 : 𝑉1-1-onto→ ran 𝐹 )
9 8 adantr ( ( 𝐹 : 𝑉1-1𝐵𝑅 ∈ Ring ) → 𝐹 : 𝑉1-1-onto→ ran 𝐹 )
10 f1ofo ( 𝐹 : 𝑉1-1-onto→ ran 𝐹𝐹 : 𝑉onto→ ran 𝐹 )
11 9 10 syl ( ( 𝐹 : 𝑉1-1𝐵𝑅 ∈ Ring ) → 𝐹 : 𝑉onto→ ran 𝐹 )
12 9 f1ocpbl ( ( ( 𝐹 : 𝑉1-1𝐵𝑅 ∈ Ring ) ∧ ( 𝑎𝑉𝑏𝑉 ) ∧ ( 𝑝𝑉𝑞𝑉 ) ) → ( ( ( 𝐹𝑎 ) = ( 𝐹𝑝 ) ∧ ( 𝐹𝑏 ) = ( 𝐹𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g𝑅 ) 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 ( +g𝑅 ) 𝑞 ) ) ) )
13 9 f1ocpbl ( ( ( 𝐹 : 𝑉1-1𝐵𝑅 ∈ Ring ) ∧ ( 𝑎𝑉𝑏𝑉 ) ∧ ( 𝑝𝑉𝑞𝑉 ) ) → ( ( ( 𝐹𝑎 ) = ( 𝐹𝑝 ) ∧ ( 𝐹𝑏 ) = ( 𝐹𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 ( .r𝑅 ) 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 ( .r𝑅 ) 𝑞 ) ) ) )
14 simpr ( ( 𝐹 : 𝑉1-1𝐵𝑅 ∈ Ring ) → 𝑅 ∈ Ring )
15 3 4 5 6 7 11 12 13 14 imasring ( ( 𝐹 : 𝑉1-1𝐵𝑅 ∈ Ring ) → ( 𝑈 ∈ Ring ∧ ( 𝐹 ‘ ( 1r𝑅 ) ) = ( 1r𝑈 ) ) )
16 15 simpld ( ( 𝐹 : 𝑉1-1𝐵𝑅 ∈ Ring ) → 𝑈 ∈ Ring )