| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imasrng.u |
⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) |
| 2 |
|
imasrng.v |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) |
| 3 |
|
imasrng.p |
⊢ + = ( +g ‘ 𝑅 ) |
| 4 |
|
imasrng.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 5 |
|
imasrng.f |
⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) |
| 6 |
|
imasrng.e1 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ) ) |
| 7 |
|
imasrng.e2 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) ) |
| 8 |
|
imasrng.r |
⊢ ( 𝜑 → 𝑅 ∈ Rng ) |
| 9 |
1 2 5 8
|
imasbas |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑈 ) ) |
| 10 |
|
eqidd |
⊢ ( 𝜑 → ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) ) |
| 11 |
|
eqidd |
⊢ ( 𝜑 → ( .r ‘ 𝑈 ) = ( .r ‘ 𝑈 ) ) |
| 12 |
3
|
a1i |
⊢ ( 𝜑 → + = ( +g ‘ 𝑅 ) ) |
| 13 |
|
rngabl |
⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Abel ) |
| 14 |
8 13
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Abel ) |
| 15 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 16 |
1 2 12 5 6 14 15
|
imasabl |
⊢ ( 𝜑 → ( 𝑈 ∈ Abel ∧ ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑈 ) ) ) |
| 17 |
16
|
simpld |
⊢ ( 𝜑 → 𝑈 ∈ Abel ) |
| 18 |
|
eqid |
⊢ ( .r ‘ 𝑈 ) = ( .r ‘ 𝑈 ) |
| 19 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → 𝑅 ∈ Rng ) |
| 20 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → 𝑢 ∈ 𝑉 ) |
| 21 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → 𝑉 = ( Base ‘ 𝑅 ) ) |
| 22 |
20 21
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → 𝑢 ∈ ( Base ‘ 𝑅 ) ) |
| 23 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → 𝑣 ∈ 𝑉 ) |
| 24 |
23 21
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → 𝑣 ∈ ( Base ‘ 𝑅 ) ) |
| 25 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 26 |
25 4
|
rngcl |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑢 · 𝑣 ) ∈ ( Base ‘ 𝑅 ) ) |
| 27 |
19 22 24 26
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → ( 𝑢 · 𝑣 ) ∈ ( Base ‘ 𝑅 ) ) |
| 28 |
27 21
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → ( 𝑢 · 𝑣 ) ∈ 𝑉 ) |
| 29 |
28
|
caovclg |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( 𝑝 · 𝑞 ) ∈ 𝑉 ) |
| 30 |
5 7 1 2 8 4 18 29
|
imasmulf |
⊢ ( 𝜑 → ( .r ‘ 𝑈 ) : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |
| 31 |
30
|
fovcld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) → ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ∈ 𝐵 ) |
| 32 |
|
forn |
⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → ran 𝐹 = 𝐵 ) |
| 33 |
5 32
|
syl |
⊢ ( 𝜑 → ran 𝐹 = 𝐵 ) |
| 34 |
33
|
eleq2d |
⊢ ( 𝜑 → ( 𝑢 ∈ ran 𝐹 ↔ 𝑢 ∈ 𝐵 ) ) |
| 35 |
33
|
eleq2d |
⊢ ( 𝜑 → ( 𝑣 ∈ ran 𝐹 ↔ 𝑣 ∈ 𝐵 ) ) |
| 36 |
33
|
eleq2d |
⊢ ( 𝜑 → ( 𝑤 ∈ ran 𝐹 ↔ 𝑤 ∈ 𝐵 ) ) |
| 37 |
34 35 36
|
3anbi123d |
⊢ ( 𝜑 → ( ( 𝑢 ∈ ran 𝐹 ∧ 𝑣 ∈ ran 𝐹 ∧ 𝑤 ∈ ran 𝐹 ) ↔ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ) |
| 38 |
|
fofn |
⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → 𝐹 Fn 𝑉 ) |
| 39 |
|
fvelrnb |
⊢ ( 𝐹 Fn 𝑉 → ( 𝑢 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 ) ) |
| 40 |
|
fvelrnb |
⊢ ( 𝐹 Fn 𝑉 → ( 𝑣 ∈ ran 𝐹 ↔ ∃ 𝑦 ∈ 𝑉 ( 𝐹 ‘ 𝑦 ) = 𝑣 ) ) |
| 41 |
|
fvelrnb |
⊢ ( 𝐹 Fn 𝑉 → ( 𝑤 ∈ ran 𝐹 ↔ ∃ 𝑧 ∈ 𝑉 ( 𝐹 ‘ 𝑧 ) = 𝑤 ) ) |
| 42 |
39 40 41
|
3anbi123d |
⊢ ( 𝐹 Fn 𝑉 → ( ( 𝑢 ∈ ran 𝐹 ∧ 𝑣 ∈ ran 𝐹 ∧ 𝑤 ∈ ran 𝐹 ) ↔ ( ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ∃ 𝑦 ∈ 𝑉 ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ∃ 𝑧 ∈ 𝑉 ( 𝐹 ‘ 𝑧 ) = 𝑤 ) ) ) |
| 43 |
5 38 42
|
3syl |
⊢ ( 𝜑 → ( ( 𝑢 ∈ ran 𝐹 ∧ 𝑣 ∈ ran 𝐹 ∧ 𝑤 ∈ ran 𝐹 ) ↔ ( ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ∃ 𝑦 ∈ 𝑉 ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ∃ 𝑧 ∈ 𝑉 ( 𝐹 ‘ 𝑧 ) = 𝑤 ) ) ) |
| 44 |
37 43
|
bitr3d |
⊢ ( 𝜑 → ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ↔ ( ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ∃ 𝑦 ∈ 𝑉 ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ∃ 𝑧 ∈ 𝑉 ( 𝐹 ‘ 𝑧 ) = 𝑤 ) ) ) |
| 45 |
|
3reeanv |
⊢ ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) ↔ ( ∃ 𝑥 ∈ 𝑉 ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ∃ 𝑦 ∈ 𝑉 ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ∃ 𝑧 ∈ 𝑉 ( 𝐹 ‘ 𝑧 ) = 𝑤 ) ) |
| 46 |
44 45
|
bitr4di |
⊢ ( 𝜑 → ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) ) ) |
| 47 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑅 ∈ Rng ) |
| 48 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → 𝑥 ∈ 𝑉 ) |
| 49 |
2
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → 𝑉 = ( Base ‘ 𝑅 ) ) |
| 50 |
48 49
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 51 |
50
|
3adant3r3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 52 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → 𝑦 ∈ 𝑉 ) |
| 53 |
52 49
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
| 54 |
53
|
3adant3r3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
| 55 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑧 ∈ 𝑉 ) |
| 56 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑉 = ( Base ‘ 𝑅 ) ) |
| 57 |
55 56
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑧 ∈ ( Base ‘ 𝑅 ) ) |
| 58 |
25 4
|
rngass |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑥 · 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) |
| 59 |
47 51 54 57 58
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑥 · 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) |
| 60 |
59
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) · 𝑧 ) ) = ( 𝐹 ‘ ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) ) |
| 61 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝜑 ) |
| 62 |
28
|
caovclg |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝑉 ) |
| 63 |
62
|
3adantr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝑉 ) |
| 64 |
5 7 1 2 8 4 18
|
imasmulval |
⊢ ( ( 𝜑 ∧ ( 𝑥 · 𝑦 ) ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) · 𝑧 ) ) ) |
| 65 |
61 63 55 64
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) · 𝑧 ) ) ) |
| 66 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑥 ∈ 𝑉 ) |
| 67 |
28
|
caovclg |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑦 · 𝑧 ) ∈ 𝑉 ) |
| 68 |
67
|
3adantr1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑦 · 𝑧 ) ∈ 𝑉 ) |
| 69 |
5 7 1 2 8 4 18
|
imasmulval |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ( 𝑦 · 𝑧 ) ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) = ( 𝐹 ‘ ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) ) |
| 70 |
61 66 68 69
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) = ( 𝐹 ‘ ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) ) |
| 71 |
60 65 70
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) ) |
| 72 |
5 7 1 2 8 4 18
|
imasmulval |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ) |
| 73 |
72
|
3adant3r3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ) |
| 74 |
73
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) |
| 75 |
5 7 1 2 8 4 18
|
imasmulval |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) |
| 76 |
75
|
3adant3r1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) |
| 77 |
76
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) ) |
| 78 |
71 74 77
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 79 |
|
simp1 |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( 𝐹 ‘ 𝑥 ) = 𝑢 ) |
| 80 |
|
simp2 |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( 𝐹 ‘ 𝑦 ) = 𝑣 ) |
| 81 |
79 80
|
oveq12d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ) |
| 82 |
|
simp3 |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( 𝐹 ‘ 𝑧 ) = 𝑤 ) |
| 83 |
81 82
|
oveq12d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) ) |
| 84 |
80 82
|
oveq12d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) |
| 85 |
79 84
|
oveq12d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) |
| 86 |
83 85
|
eqeq12d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) ↔ ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 87 |
78 86
|
syl5ibcom |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 88 |
87
|
3exp2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑉 → ( 𝑦 ∈ 𝑉 → ( 𝑧 ∈ 𝑉 → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) ) ) ) |
| 89 |
88
|
imp32 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑧 ∈ 𝑉 → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) ) |
| 90 |
89
|
rexlimdv |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( ∃ 𝑧 ∈ 𝑉 ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 91 |
90
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 92 |
46 91
|
sylbid |
⊢ ( 𝜑 → ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) → ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 93 |
92
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) |
| 94 |
25 3 4
|
rngdi |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) |
| 95 |
47 51 54 57 94
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) |
| 96 |
95
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝐹 ‘ ( 𝑥 · ( 𝑦 + 𝑧 ) ) ) = ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) ) |
| 97 |
25 3
|
rngacl |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑢 + 𝑣 ) ∈ ( Base ‘ 𝑅 ) ) |
| 98 |
19 22 24 97
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → ( 𝑢 + 𝑣 ) ∈ ( Base ‘ 𝑅 ) ) |
| 99 |
98 21
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → ( 𝑢 + 𝑣 ) ∈ 𝑉 ) |
| 100 |
99
|
caovclg |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑦 + 𝑧 ) ∈ 𝑉 ) |
| 101 |
100
|
3adantr1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑦 + 𝑧 ) ∈ 𝑉 ) |
| 102 |
5 7 1 2 8 4 18
|
imasmulval |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ( 𝑦 + 𝑧 ) ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) = ( 𝐹 ‘ ( 𝑥 · ( 𝑦 + 𝑧 ) ) ) ) |
| 103 |
61 66 101 102
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) = ( 𝐹 ‘ ( 𝑥 · ( 𝑦 + 𝑧 ) ) ) ) |
| 104 |
28
|
caovclg |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑥 · 𝑧 ) ∈ 𝑉 ) |
| 105 |
104
|
3adantr2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑥 · 𝑧 ) ∈ 𝑉 ) |
| 106 |
|
eqid |
⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) |
| 107 |
5 6 1 2 8 3 106
|
imasaddval |
⊢ ( ( 𝜑 ∧ ( 𝑥 · 𝑦 ) ∈ 𝑉 ∧ ( 𝑥 · 𝑧 ) ∈ 𝑉 ) → ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ) = ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) ) |
| 108 |
61 63 105 107
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ) = ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) ) |
| 109 |
96 103 108
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) = ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ) ) |
| 110 |
5 6 1 2 8 3 106
|
imasaddval |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) |
| 111 |
110
|
3adant3r1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) |
| 112 |
111
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) ) |
| 113 |
5 7 1 2 8 4 18
|
imasmulval |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ) |
| 114 |
113
|
3adant3r2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ) |
| 115 |
73 114
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ) ) |
| 116 |
109 112 115
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 117 |
80 82
|
oveq12d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) |
| 118 |
79 117
|
oveq12d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) ) |
| 119 |
79 82
|
oveq12d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ) |
| 120 |
81 119
|
oveq12d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ) ) |
| 121 |
118 120
|
eqeq12d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) ↔ ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 122 |
116 121
|
syl5ibcom |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 123 |
122
|
3exp2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑉 → ( 𝑦 ∈ 𝑉 → ( 𝑧 ∈ 𝑉 → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) ) ) ) |
| 124 |
123
|
imp32 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑧 ∈ 𝑉 → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) ) |
| 125 |
124
|
rexlimdv |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( ∃ 𝑧 ∈ 𝑉 ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 126 |
125
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 127 |
46 126
|
sylbid |
⊢ ( 𝜑 → ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) → ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 128 |
127
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑢 ( .r ‘ 𝑈 ) ( 𝑣 ( +g ‘ 𝑈 ) 𝑤 ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑣 ) ( +g ‘ 𝑈 ) ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ) ) |
| 129 |
25 3 4
|
rngdir |
⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
| 130 |
47 51 54 57 129
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
| 131 |
130
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝐹 ‘ ( ( 𝑥 + 𝑦 ) · 𝑧 ) ) = ( 𝐹 ‘ ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) |
| 132 |
99
|
caovclg |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑉 ) |
| 133 |
132
|
3adantr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑉 ) |
| 134 |
5 7 1 2 8 4 18
|
imasmulval |
⊢ ( ( 𝜑 ∧ ( 𝑥 + 𝑦 ) ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( ( 𝑥 + 𝑦 ) · 𝑧 ) ) ) |
| 135 |
61 133 55 134
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( ( 𝑥 + 𝑦 ) · 𝑧 ) ) ) |
| 136 |
5 6 1 2 8 3 106
|
imasaddval |
⊢ ( ( 𝜑 ∧ ( 𝑥 · 𝑧 ) ∈ 𝑉 ∧ ( 𝑦 · 𝑧 ) ∈ 𝑉 ) → ( ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) = ( 𝐹 ‘ ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) |
| 137 |
61 105 68 136
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) = ( 𝐹 ‘ ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) |
| 138 |
131 135 137
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) ) |
| 139 |
5 6 1 2 8 3 106
|
imasaddval |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ) |
| 140 |
139
|
3adant3r3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ) |
| 141 |
140
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) |
| 142 |
114 76
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) ) |
| 143 |
138 141 142
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 144 |
79 80
|
oveq12d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ) |
| 145 |
144 82
|
oveq12d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) ) |
| 146 |
119 84
|
oveq12d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ( +g ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) |
| 147 |
145 146
|
eqeq12d |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ( +g ‘ 𝑈 ) ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) ↔ ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ( +g ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 148 |
143 147
|
syl5ibcom |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ( +g ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 149 |
148
|
3exp2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑉 → ( 𝑦 ∈ 𝑉 → ( 𝑧 ∈ 𝑉 → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ( +g ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) ) ) ) |
| 150 |
149
|
imp32 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑧 ∈ 𝑉 → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ( +g ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) ) |
| 151 |
150
|
rexlimdv |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( ∃ 𝑧 ∈ 𝑉 ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ( +g ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 152 |
151
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( ( 𝐹 ‘ 𝑥 ) = 𝑢 ∧ ( 𝐹 ‘ 𝑦 ) = 𝑣 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑤 ) → ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ( +g ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 153 |
46 152
|
sylbid |
⊢ ( 𝜑 → ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) → ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ( +g ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) ) |
| 154 |
153
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑢 ( +g ‘ 𝑈 ) 𝑣 ) ( .r ‘ 𝑈 ) 𝑤 ) = ( ( 𝑢 ( .r ‘ 𝑈 ) 𝑤 ) ( +g ‘ 𝑈 ) ( 𝑣 ( .r ‘ 𝑈 ) 𝑤 ) ) ) |
| 155 |
9 10 11 17 31 93 128 154
|
isrngd |
⊢ ( 𝜑 → 𝑈 ∈ Rng ) |