Metamath Proof Explorer


Theorem imasrng

Description: The image structure of a non-unital ring is a non-unital ring ( imasring analog). (Contributed by AV, 22-Feb-2025)

Ref Expression
Hypotheses imasrng.u ( 𝜑𝑈 = ( 𝐹s 𝑅 ) )
imasrng.v ( 𝜑𝑉 = ( Base ‘ 𝑅 ) )
imasrng.p + = ( +g𝑅 )
imasrng.t · = ( .r𝑅 )
imasrng.f ( 𝜑𝐹 : 𝑉onto𝐵 )
imasrng.e1 ( ( 𝜑 ∧ ( 𝑎𝑉𝑏𝑉 ) ∧ ( 𝑝𝑉𝑞𝑉 ) ) → ( ( ( 𝐹𝑎 ) = ( 𝐹𝑝 ) ∧ ( 𝐹𝑏 ) = ( 𝐹𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ) )
imasrng.e2 ( ( 𝜑 ∧ ( 𝑎𝑉𝑏𝑉 ) ∧ ( 𝑝𝑉𝑞𝑉 ) ) → ( ( ( 𝐹𝑎 ) = ( 𝐹𝑝 ) ∧ ( 𝐹𝑏 ) = ( 𝐹𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) )
imasrng.r ( 𝜑𝑅 ∈ Rng )
Assertion imasrng ( 𝜑𝑈 ∈ Rng )

Proof

Step Hyp Ref Expression
1 imasrng.u ( 𝜑𝑈 = ( 𝐹s 𝑅 ) )
2 imasrng.v ( 𝜑𝑉 = ( Base ‘ 𝑅 ) )
3 imasrng.p + = ( +g𝑅 )
4 imasrng.t · = ( .r𝑅 )
5 imasrng.f ( 𝜑𝐹 : 𝑉onto𝐵 )
6 imasrng.e1 ( ( 𝜑 ∧ ( 𝑎𝑉𝑏𝑉 ) ∧ ( 𝑝𝑉𝑞𝑉 ) ) → ( ( ( 𝐹𝑎 ) = ( 𝐹𝑝 ) ∧ ( 𝐹𝑏 ) = ( 𝐹𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ) )
7 imasrng.e2 ( ( 𝜑 ∧ ( 𝑎𝑉𝑏𝑉 ) ∧ ( 𝑝𝑉𝑞𝑉 ) ) → ( ( ( 𝐹𝑎 ) = ( 𝐹𝑝 ) ∧ ( 𝐹𝑏 ) = ( 𝐹𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) )
8 imasrng.r ( 𝜑𝑅 ∈ Rng )
9 1 2 5 8 imasbas ( 𝜑𝐵 = ( Base ‘ 𝑈 ) )
10 eqidd ( 𝜑 → ( +g𝑈 ) = ( +g𝑈 ) )
11 eqidd ( 𝜑 → ( .r𝑈 ) = ( .r𝑈 ) )
12 3 a1i ( 𝜑+ = ( +g𝑅 ) )
13 rngabl ( 𝑅 ∈ Rng → 𝑅 ∈ Abel )
14 8 13 syl ( 𝜑𝑅 ∈ Abel )
15 eqid ( 0g𝑅 ) = ( 0g𝑅 )
16 1 2 12 5 6 14 15 imasabl ( 𝜑 → ( 𝑈 ∈ Abel ∧ ( 𝐹 ‘ ( 0g𝑅 ) ) = ( 0g𝑈 ) ) )
17 16 simpld ( 𝜑𝑈 ∈ Abel )
18 eqid ( .r𝑈 ) = ( .r𝑈 )
19 8 adantr ( ( 𝜑 ∧ ( 𝑢𝑉𝑣𝑉 ) ) → 𝑅 ∈ Rng )
20 simprl ( ( 𝜑 ∧ ( 𝑢𝑉𝑣𝑉 ) ) → 𝑢𝑉 )
21 2 adantr ( ( 𝜑 ∧ ( 𝑢𝑉𝑣𝑉 ) ) → 𝑉 = ( Base ‘ 𝑅 ) )
22 20 21 eleqtrd ( ( 𝜑 ∧ ( 𝑢𝑉𝑣𝑉 ) ) → 𝑢 ∈ ( Base ‘ 𝑅 ) )
23 simprr ( ( 𝜑 ∧ ( 𝑢𝑉𝑣𝑉 ) ) → 𝑣𝑉 )
24 23 21 eleqtrd ( ( 𝜑 ∧ ( 𝑢𝑉𝑣𝑉 ) ) → 𝑣 ∈ ( Base ‘ 𝑅 ) )
25 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
26 25 4 rngcl ( ( 𝑅 ∈ Rng ∧ 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑢 · 𝑣 ) ∈ ( Base ‘ 𝑅 ) )
27 19 22 24 26 syl3anc ( ( 𝜑 ∧ ( 𝑢𝑉𝑣𝑉 ) ) → ( 𝑢 · 𝑣 ) ∈ ( Base ‘ 𝑅 ) )
28 27 21 eleqtrrd ( ( 𝜑 ∧ ( 𝑢𝑉𝑣𝑉 ) ) → ( 𝑢 · 𝑣 ) ∈ 𝑉 )
29 28 caovclg ( ( 𝜑 ∧ ( 𝑝𝑉𝑞𝑉 ) ) → ( 𝑝 · 𝑞 ) ∈ 𝑉 )
30 5 7 1 2 8 4 18 29 imasmulf ( 𝜑 → ( .r𝑈 ) : ( 𝐵 × 𝐵 ) ⟶ 𝐵 )
31 30 fovcld ( ( 𝜑𝑢𝐵𝑣𝐵 ) → ( 𝑢 ( .r𝑈 ) 𝑣 ) ∈ 𝐵 )
32 forn ( 𝐹 : 𝑉onto𝐵 → ran 𝐹 = 𝐵 )
33 5 32 syl ( 𝜑 → ran 𝐹 = 𝐵 )
34 33 eleq2d ( 𝜑 → ( 𝑢 ∈ ran 𝐹𝑢𝐵 ) )
35 33 eleq2d ( 𝜑 → ( 𝑣 ∈ ran 𝐹𝑣𝐵 ) )
36 33 eleq2d ( 𝜑 → ( 𝑤 ∈ ran 𝐹𝑤𝐵 ) )
37 34 35 36 3anbi123d ( 𝜑 → ( ( 𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹𝑤 ∈ ran 𝐹 ) ↔ ( 𝑢𝐵𝑣𝐵𝑤𝐵 ) ) )
38 fofn ( 𝐹 : 𝑉onto𝐵𝐹 Fn 𝑉 )
39 fvelrnb ( 𝐹 Fn 𝑉 → ( 𝑢 ∈ ran 𝐹 ↔ ∃ 𝑥𝑉 ( 𝐹𝑥 ) = 𝑢 ) )
40 fvelrnb ( 𝐹 Fn 𝑉 → ( 𝑣 ∈ ran 𝐹 ↔ ∃ 𝑦𝑉 ( 𝐹𝑦 ) = 𝑣 ) )
41 fvelrnb ( 𝐹 Fn 𝑉 → ( 𝑤 ∈ ran 𝐹 ↔ ∃ 𝑧𝑉 ( 𝐹𝑧 ) = 𝑤 ) )
42 39 40 41 3anbi123d ( 𝐹 Fn 𝑉 → ( ( 𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹𝑤 ∈ ran 𝐹 ) ↔ ( ∃ 𝑥𝑉 ( 𝐹𝑥 ) = 𝑢 ∧ ∃ 𝑦𝑉 ( 𝐹𝑦 ) = 𝑣 ∧ ∃ 𝑧𝑉 ( 𝐹𝑧 ) = 𝑤 ) ) )
43 5 38 42 3syl ( 𝜑 → ( ( 𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹𝑤 ∈ ran 𝐹 ) ↔ ( ∃ 𝑥𝑉 ( 𝐹𝑥 ) = 𝑢 ∧ ∃ 𝑦𝑉 ( 𝐹𝑦 ) = 𝑣 ∧ ∃ 𝑧𝑉 ( 𝐹𝑧 ) = 𝑤 ) ) )
44 37 43 bitr3d ( 𝜑 → ( ( 𝑢𝐵𝑣𝐵𝑤𝐵 ) ↔ ( ∃ 𝑥𝑉 ( 𝐹𝑥 ) = 𝑢 ∧ ∃ 𝑦𝑉 ( 𝐹𝑦 ) = 𝑣 ∧ ∃ 𝑧𝑉 ( 𝐹𝑧 ) = 𝑤 ) ) )
45 3reeanv ( ∃ 𝑥𝑉𝑦𝑉𝑧𝑉 ( ( 𝐹𝑥 ) = 𝑢 ∧ ( 𝐹𝑦 ) = 𝑣 ∧ ( 𝐹𝑧 ) = 𝑤 ) ↔ ( ∃ 𝑥𝑉 ( 𝐹𝑥 ) = 𝑢 ∧ ∃ 𝑦𝑉 ( 𝐹𝑦 ) = 𝑣 ∧ ∃ 𝑧𝑉 ( 𝐹𝑧 ) = 𝑤 ) )
46 44 45 bitr4di ( 𝜑 → ( ( 𝑢𝐵𝑣𝐵𝑤𝐵 ) ↔ ∃ 𝑥𝑉𝑦𝑉𝑧𝑉 ( ( 𝐹𝑥 ) = 𝑢 ∧ ( 𝐹𝑦 ) = 𝑣 ∧ ( 𝐹𝑧 ) = 𝑤 ) ) )
47 8 adantr ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → 𝑅 ∈ Rng )
48 simp2 ( ( 𝜑𝑥𝑉𝑦𝑉 ) → 𝑥𝑉 )
49 2 3ad2ant1 ( ( 𝜑𝑥𝑉𝑦𝑉 ) → 𝑉 = ( Base ‘ 𝑅 ) )
50 48 49 eleqtrd ( ( 𝜑𝑥𝑉𝑦𝑉 ) → 𝑥 ∈ ( Base ‘ 𝑅 ) )
51 50 3adant3r3 ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) )
52 simp3 ( ( 𝜑𝑥𝑉𝑦𝑉 ) → 𝑦𝑉 )
53 52 49 eleqtrd ( ( 𝜑𝑥𝑉𝑦𝑉 ) → 𝑦 ∈ ( Base ‘ 𝑅 ) )
54 53 3adant3r3 ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → 𝑦 ∈ ( Base ‘ 𝑅 ) )
55 simpr3 ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → 𝑧𝑉 )
56 2 adantr ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → 𝑉 = ( Base ‘ 𝑅 ) )
57 55 56 eleqtrd ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → 𝑧 ∈ ( Base ‘ 𝑅 ) )
58 25 4 rngass ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑥 · 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) )
59 47 51 54 57 58 syl13anc ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → ( ( 𝑥 · 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) )
60 59 fveq2d ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) · 𝑧 ) ) = ( 𝐹 ‘ ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) )
61 simpl ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → 𝜑 )
62 28 caovclg ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝑉 )
63 62 3adantr3 ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝑉 )
64 5 7 1 2 8 4 18 imasmulval ( ( 𝜑 ∧ ( 𝑥 · 𝑦 ) ∈ 𝑉𝑧𝑉 ) → ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ( .r𝑈 ) ( 𝐹𝑧 ) ) = ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) · 𝑧 ) ) )
65 61 63 55 64 syl3anc ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ( .r𝑈 ) ( 𝐹𝑧 ) ) = ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) · 𝑧 ) ) )
66 simpr1 ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → 𝑥𝑉 )
67 28 caovclg ( ( 𝜑 ∧ ( 𝑦𝑉𝑧𝑉 ) ) → ( 𝑦 · 𝑧 ) ∈ 𝑉 )
68 67 3adantr1 ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → ( 𝑦 · 𝑧 ) ∈ 𝑉 )
69 5 7 1 2 8 4 18 imasmulval ( ( 𝜑𝑥𝑉 ∧ ( 𝑦 · 𝑧 ) ∈ 𝑉 ) → ( ( 𝐹𝑥 ) ( .r𝑈 ) ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) = ( 𝐹 ‘ ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) )
70 61 66 68 69 syl3anc ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → ( ( 𝐹𝑥 ) ( .r𝑈 ) ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) = ( 𝐹 ‘ ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) )
71 60 65 70 3eqtr4d ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ( .r𝑈 ) ( 𝐹𝑧 ) ) = ( ( 𝐹𝑥 ) ( .r𝑈 ) ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) )
72 5 7 1 2 8 4 18 imasmulval ( ( 𝜑𝑥𝑉𝑦𝑉 ) → ( ( 𝐹𝑥 ) ( .r𝑈 ) ( 𝐹𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) )
73 72 3adant3r3 ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → ( ( 𝐹𝑥 ) ( .r𝑈 ) ( 𝐹𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) )
74 73 oveq1d ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → ( ( ( 𝐹𝑥 ) ( .r𝑈 ) ( 𝐹𝑦 ) ) ( .r𝑈 ) ( 𝐹𝑧 ) ) = ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ( .r𝑈 ) ( 𝐹𝑧 ) ) )
75 5 7 1 2 8 4 18 imasmulval ( ( 𝜑𝑦𝑉𝑧𝑉 ) → ( ( 𝐹𝑦 ) ( .r𝑈 ) ( 𝐹𝑧 ) ) = ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) )
76 75 3adant3r1 ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → ( ( 𝐹𝑦 ) ( .r𝑈 ) ( 𝐹𝑧 ) ) = ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) )
77 76 oveq2d ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → ( ( 𝐹𝑥 ) ( .r𝑈 ) ( ( 𝐹𝑦 ) ( .r𝑈 ) ( 𝐹𝑧 ) ) ) = ( ( 𝐹𝑥 ) ( .r𝑈 ) ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) )
78 71 74 77 3eqtr4d ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → ( ( ( 𝐹𝑥 ) ( .r𝑈 ) ( 𝐹𝑦 ) ) ( .r𝑈 ) ( 𝐹𝑧 ) ) = ( ( 𝐹𝑥 ) ( .r𝑈 ) ( ( 𝐹𝑦 ) ( .r𝑈 ) ( 𝐹𝑧 ) ) ) )
79 simp1 ( ( ( 𝐹𝑥 ) = 𝑢 ∧ ( 𝐹𝑦 ) = 𝑣 ∧ ( 𝐹𝑧 ) = 𝑤 ) → ( 𝐹𝑥 ) = 𝑢 )
80 simp2 ( ( ( 𝐹𝑥 ) = 𝑢 ∧ ( 𝐹𝑦 ) = 𝑣 ∧ ( 𝐹𝑧 ) = 𝑤 ) → ( 𝐹𝑦 ) = 𝑣 )
81 79 80 oveq12d ( ( ( 𝐹𝑥 ) = 𝑢 ∧ ( 𝐹𝑦 ) = 𝑣 ∧ ( 𝐹𝑧 ) = 𝑤 ) → ( ( 𝐹𝑥 ) ( .r𝑈 ) ( 𝐹𝑦 ) ) = ( 𝑢 ( .r𝑈 ) 𝑣 ) )
82 simp3 ( ( ( 𝐹𝑥 ) = 𝑢 ∧ ( 𝐹𝑦 ) = 𝑣 ∧ ( 𝐹𝑧 ) = 𝑤 ) → ( 𝐹𝑧 ) = 𝑤 )
83 81 82 oveq12d ( ( ( 𝐹𝑥 ) = 𝑢 ∧ ( 𝐹𝑦 ) = 𝑣 ∧ ( 𝐹𝑧 ) = 𝑤 ) → ( ( ( 𝐹𝑥 ) ( .r𝑈 ) ( 𝐹𝑦 ) ) ( .r𝑈 ) ( 𝐹𝑧 ) ) = ( ( 𝑢 ( .r𝑈 ) 𝑣 ) ( .r𝑈 ) 𝑤 ) )
84 80 82 oveq12d ( ( ( 𝐹𝑥 ) = 𝑢 ∧ ( 𝐹𝑦 ) = 𝑣 ∧ ( 𝐹𝑧 ) = 𝑤 ) → ( ( 𝐹𝑦 ) ( .r𝑈 ) ( 𝐹𝑧 ) ) = ( 𝑣 ( .r𝑈 ) 𝑤 ) )
85 79 84 oveq12d ( ( ( 𝐹𝑥 ) = 𝑢 ∧ ( 𝐹𝑦 ) = 𝑣 ∧ ( 𝐹𝑧 ) = 𝑤 ) → ( ( 𝐹𝑥 ) ( .r𝑈 ) ( ( 𝐹𝑦 ) ( .r𝑈 ) ( 𝐹𝑧 ) ) ) = ( 𝑢 ( .r𝑈 ) ( 𝑣 ( .r𝑈 ) 𝑤 ) ) )
86 83 85 eqeq12d ( ( ( 𝐹𝑥 ) = 𝑢 ∧ ( 𝐹𝑦 ) = 𝑣 ∧ ( 𝐹𝑧 ) = 𝑤 ) → ( ( ( ( 𝐹𝑥 ) ( .r𝑈 ) ( 𝐹𝑦 ) ) ( .r𝑈 ) ( 𝐹𝑧 ) ) = ( ( 𝐹𝑥 ) ( .r𝑈 ) ( ( 𝐹𝑦 ) ( .r𝑈 ) ( 𝐹𝑧 ) ) ) ↔ ( ( 𝑢 ( .r𝑈 ) 𝑣 ) ( .r𝑈 ) 𝑤 ) = ( 𝑢 ( .r𝑈 ) ( 𝑣 ( .r𝑈 ) 𝑤 ) ) ) )
87 78 86 syl5ibcom ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → ( ( ( 𝐹𝑥 ) = 𝑢 ∧ ( 𝐹𝑦 ) = 𝑣 ∧ ( 𝐹𝑧 ) = 𝑤 ) → ( ( 𝑢 ( .r𝑈 ) 𝑣 ) ( .r𝑈 ) 𝑤 ) = ( 𝑢 ( .r𝑈 ) ( 𝑣 ( .r𝑈 ) 𝑤 ) ) ) )
88 87 3exp2 ( 𝜑 → ( 𝑥𝑉 → ( 𝑦𝑉 → ( 𝑧𝑉 → ( ( ( 𝐹𝑥 ) = 𝑢 ∧ ( 𝐹𝑦 ) = 𝑣 ∧ ( 𝐹𝑧 ) = 𝑤 ) → ( ( 𝑢 ( .r𝑈 ) 𝑣 ) ( .r𝑈 ) 𝑤 ) = ( 𝑢 ( .r𝑈 ) ( 𝑣 ( .r𝑈 ) 𝑤 ) ) ) ) ) ) )
89 88 imp32 ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉 ) ) → ( 𝑧𝑉 → ( ( ( 𝐹𝑥 ) = 𝑢 ∧ ( 𝐹𝑦 ) = 𝑣 ∧ ( 𝐹𝑧 ) = 𝑤 ) → ( ( 𝑢 ( .r𝑈 ) 𝑣 ) ( .r𝑈 ) 𝑤 ) = ( 𝑢 ( .r𝑈 ) ( 𝑣 ( .r𝑈 ) 𝑤 ) ) ) ) )
90 89 rexlimdv ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉 ) ) → ( ∃ 𝑧𝑉 ( ( 𝐹𝑥 ) = 𝑢 ∧ ( 𝐹𝑦 ) = 𝑣 ∧ ( 𝐹𝑧 ) = 𝑤 ) → ( ( 𝑢 ( .r𝑈 ) 𝑣 ) ( .r𝑈 ) 𝑤 ) = ( 𝑢 ( .r𝑈 ) ( 𝑣 ( .r𝑈 ) 𝑤 ) ) ) )
91 90 rexlimdvva ( 𝜑 → ( ∃ 𝑥𝑉𝑦𝑉𝑧𝑉 ( ( 𝐹𝑥 ) = 𝑢 ∧ ( 𝐹𝑦 ) = 𝑣 ∧ ( 𝐹𝑧 ) = 𝑤 ) → ( ( 𝑢 ( .r𝑈 ) 𝑣 ) ( .r𝑈 ) 𝑤 ) = ( 𝑢 ( .r𝑈 ) ( 𝑣 ( .r𝑈 ) 𝑤 ) ) ) )
92 46 91 sylbid ( 𝜑 → ( ( 𝑢𝐵𝑣𝐵𝑤𝐵 ) → ( ( 𝑢 ( .r𝑈 ) 𝑣 ) ( .r𝑈 ) 𝑤 ) = ( 𝑢 ( .r𝑈 ) ( 𝑣 ( .r𝑈 ) 𝑤 ) ) ) )
93 92 imp ( ( 𝜑 ∧ ( 𝑢𝐵𝑣𝐵𝑤𝐵 ) ) → ( ( 𝑢 ( .r𝑈 ) 𝑣 ) ( .r𝑈 ) 𝑤 ) = ( 𝑢 ( .r𝑈 ) ( 𝑣 ( .r𝑈 ) 𝑤 ) ) )
94 25 3 4 rngdi ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) )
95 47 51 54 57 94 syl13anc ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) )
96 95 fveq2d ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → ( 𝐹 ‘ ( 𝑥 · ( 𝑦 + 𝑧 ) ) ) = ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) )
97 25 3 rngacl ( ( 𝑅 ∈ Rng ∧ 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑢 + 𝑣 ) ∈ ( Base ‘ 𝑅 ) )
98 19 22 24 97 syl3anc ( ( 𝜑 ∧ ( 𝑢𝑉𝑣𝑉 ) ) → ( 𝑢 + 𝑣 ) ∈ ( Base ‘ 𝑅 ) )
99 98 21 eleqtrrd ( ( 𝜑 ∧ ( 𝑢𝑉𝑣𝑉 ) ) → ( 𝑢 + 𝑣 ) ∈ 𝑉 )
100 99 caovclg ( ( 𝜑 ∧ ( 𝑦𝑉𝑧𝑉 ) ) → ( 𝑦 + 𝑧 ) ∈ 𝑉 )
101 100 3adantr1 ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → ( 𝑦 + 𝑧 ) ∈ 𝑉 )
102 5 7 1 2 8 4 18 imasmulval ( ( 𝜑𝑥𝑉 ∧ ( 𝑦 + 𝑧 ) ∈ 𝑉 ) → ( ( 𝐹𝑥 ) ( .r𝑈 ) ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) = ( 𝐹 ‘ ( 𝑥 · ( 𝑦 + 𝑧 ) ) ) )
103 61 66 101 102 syl3anc ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → ( ( 𝐹𝑥 ) ( .r𝑈 ) ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) = ( 𝐹 ‘ ( 𝑥 · ( 𝑦 + 𝑧 ) ) ) )
104 28 caovclg ( ( 𝜑 ∧ ( 𝑥𝑉𝑧𝑉 ) ) → ( 𝑥 · 𝑧 ) ∈ 𝑉 )
105 104 3adantr2 ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → ( 𝑥 · 𝑧 ) ∈ 𝑉 )
106 eqid ( +g𝑈 ) = ( +g𝑈 )
107 5 6 1 2 8 3 106 imasaddval ( ( 𝜑 ∧ ( 𝑥 · 𝑦 ) ∈ 𝑉 ∧ ( 𝑥 · 𝑧 ) ∈ 𝑉 ) → ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ( +g𝑈 ) ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ) = ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) )
108 61 63 105 107 syl3anc ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ( +g𝑈 ) ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ) = ( 𝐹 ‘ ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) )
109 96 103 108 3eqtr4d ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → ( ( 𝐹𝑥 ) ( .r𝑈 ) ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) = ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ( +g𝑈 ) ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ) )
110 5 6 1 2 8 3 106 imasaddval ( ( 𝜑𝑦𝑉𝑧𝑉 ) → ( ( 𝐹𝑦 ) ( +g𝑈 ) ( 𝐹𝑧 ) ) = ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) )
111 110 3adant3r1 ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → ( ( 𝐹𝑦 ) ( +g𝑈 ) ( 𝐹𝑧 ) ) = ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) )
112 111 oveq2d ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → ( ( 𝐹𝑥 ) ( .r𝑈 ) ( ( 𝐹𝑦 ) ( +g𝑈 ) ( 𝐹𝑧 ) ) ) = ( ( 𝐹𝑥 ) ( .r𝑈 ) ( 𝐹 ‘ ( 𝑦 + 𝑧 ) ) ) )
113 5 7 1 2 8 4 18 imasmulval ( ( 𝜑𝑥𝑉𝑧𝑉 ) → ( ( 𝐹𝑥 ) ( .r𝑈 ) ( 𝐹𝑧 ) ) = ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) )
114 113 3adant3r2 ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → ( ( 𝐹𝑥 ) ( .r𝑈 ) ( 𝐹𝑧 ) ) = ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) )
115 73 114 oveq12d ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → ( ( ( 𝐹𝑥 ) ( .r𝑈 ) ( 𝐹𝑦 ) ) ( +g𝑈 ) ( ( 𝐹𝑥 ) ( .r𝑈 ) ( 𝐹𝑧 ) ) ) = ( ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ( +g𝑈 ) ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ) )
116 109 112 115 3eqtr4d ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → ( ( 𝐹𝑥 ) ( .r𝑈 ) ( ( 𝐹𝑦 ) ( +g𝑈 ) ( 𝐹𝑧 ) ) ) = ( ( ( 𝐹𝑥 ) ( .r𝑈 ) ( 𝐹𝑦 ) ) ( +g𝑈 ) ( ( 𝐹𝑥 ) ( .r𝑈 ) ( 𝐹𝑧 ) ) ) )
117 80 82 oveq12d ( ( ( 𝐹𝑥 ) = 𝑢 ∧ ( 𝐹𝑦 ) = 𝑣 ∧ ( 𝐹𝑧 ) = 𝑤 ) → ( ( 𝐹𝑦 ) ( +g𝑈 ) ( 𝐹𝑧 ) ) = ( 𝑣 ( +g𝑈 ) 𝑤 ) )
118 79 117 oveq12d ( ( ( 𝐹𝑥 ) = 𝑢 ∧ ( 𝐹𝑦 ) = 𝑣 ∧ ( 𝐹𝑧 ) = 𝑤 ) → ( ( 𝐹𝑥 ) ( .r𝑈 ) ( ( 𝐹𝑦 ) ( +g𝑈 ) ( 𝐹𝑧 ) ) ) = ( 𝑢 ( .r𝑈 ) ( 𝑣 ( +g𝑈 ) 𝑤 ) ) )
119 79 82 oveq12d ( ( ( 𝐹𝑥 ) = 𝑢 ∧ ( 𝐹𝑦 ) = 𝑣 ∧ ( 𝐹𝑧 ) = 𝑤 ) → ( ( 𝐹𝑥 ) ( .r𝑈 ) ( 𝐹𝑧 ) ) = ( 𝑢 ( .r𝑈 ) 𝑤 ) )
120 81 119 oveq12d ( ( ( 𝐹𝑥 ) = 𝑢 ∧ ( 𝐹𝑦 ) = 𝑣 ∧ ( 𝐹𝑧 ) = 𝑤 ) → ( ( ( 𝐹𝑥 ) ( .r𝑈 ) ( 𝐹𝑦 ) ) ( +g𝑈 ) ( ( 𝐹𝑥 ) ( .r𝑈 ) ( 𝐹𝑧 ) ) ) = ( ( 𝑢 ( .r𝑈 ) 𝑣 ) ( +g𝑈 ) ( 𝑢 ( .r𝑈 ) 𝑤 ) ) )
121 118 120 eqeq12d ( ( ( 𝐹𝑥 ) = 𝑢 ∧ ( 𝐹𝑦 ) = 𝑣 ∧ ( 𝐹𝑧 ) = 𝑤 ) → ( ( ( 𝐹𝑥 ) ( .r𝑈 ) ( ( 𝐹𝑦 ) ( +g𝑈 ) ( 𝐹𝑧 ) ) ) = ( ( ( 𝐹𝑥 ) ( .r𝑈 ) ( 𝐹𝑦 ) ) ( +g𝑈 ) ( ( 𝐹𝑥 ) ( .r𝑈 ) ( 𝐹𝑧 ) ) ) ↔ ( 𝑢 ( .r𝑈 ) ( 𝑣 ( +g𝑈 ) 𝑤 ) ) = ( ( 𝑢 ( .r𝑈 ) 𝑣 ) ( +g𝑈 ) ( 𝑢 ( .r𝑈 ) 𝑤 ) ) ) )
122 116 121 syl5ibcom ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → ( ( ( 𝐹𝑥 ) = 𝑢 ∧ ( 𝐹𝑦 ) = 𝑣 ∧ ( 𝐹𝑧 ) = 𝑤 ) → ( 𝑢 ( .r𝑈 ) ( 𝑣 ( +g𝑈 ) 𝑤 ) ) = ( ( 𝑢 ( .r𝑈 ) 𝑣 ) ( +g𝑈 ) ( 𝑢 ( .r𝑈 ) 𝑤 ) ) ) )
123 122 3exp2 ( 𝜑 → ( 𝑥𝑉 → ( 𝑦𝑉 → ( 𝑧𝑉 → ( ( ( 𝐹𝑥 ) = 𝑢 ∧ ( 𝐹𝑦 ) = 𝑣 ∧ ( 𝐹𝑧 ) = 𝑤 ) → ( 𝑢 ( .r𝑈 ) ( 𝑣 ( +g𝑈 ) 𝑤 ) ) = ( ( 𝑢 ( .r𝑈 ) 𝑣 ) ( +g𝑈 ) ( 𝑢 ( .r𝑈 ) 𝑤 ) ) ) ) ) ) )
124 123 imp32 ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉 ) ) → ( 𝑧𝑉 → ( ( ( 𝐹𝑥 ) = 𝑢 ∧ ( 𝐹𝑦 ) = 𝑣 ∧ ( 𝐹𝑧 ) = 𝑤 ) → ( 𝑢 ( .r𝑈 ) ( 𝑣 ( +g𝑈 ) 𝑤 ) ) = ( ( 𝑢 ( .r𝑈 ) 𝑣 ) ( +g𝑈 ) ( 𝑢 ( .r𝑈 ) 𝑤 ) ) ) ) )
125 124 rexlimdv ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉 ) ) → ( ∃ 𝑧𝑉 ( ( 𝐹𝑥 ) = 𝑢 ∧ ( 𝐹𝑦 ) = 𝑣 ∧ ( 𝐹𝑧 ) = 𝑤 ) → ( 𝑢 ( .r𝑈 ) ( 𝑣 ( +g𝑈 ) 𝑤 ) ) = ( ( 𝑢 ( .r𝑈 ) 𝑣 ) ( +g𝑈 ) ( 𝑢 ( .r𝑈 ) 𝑤 ) ) ) )
126 125 rexlimdvva ( 𝜑 → ( ∃ 𝑥𝑉𝑦𝑉𝑧𝑉 ( ( 𝐹𝑥 ) = 𝑢 ∧ ( 𝐹𝑦 ) = 𝑣 ∧ ( 𝐹𝑧 ) = 𝑤 ) → ( 𝑢 ( .r𝑈 ) ( 𝑣 ( +g𝑈 ) 𝑤 ) ) = ( ( 𝑢 ( .r𝑈 ) 𝑣 ) ( +g𝑈 ) ( 𝑢 ( .r𝑈 ) 𝑤 ) ) ) )
127 46 126 sylbid ( 𝜑 → ( ( 𝑢𝐵𝑣𝐵𝑤𝐵 ) → ( 𝑢 ( .r𝑈 ) ( 𝑣 ( +g𝑈 ) 𝑤 ) ) = ( ( 𝑢 ( .r𝑈 ) 𝑣 ) ( +g𝑈 ) ( 𝑢 ( .r𝑈 ) 𝑤 ) ) ) )
128 127 imp ( ( 𝜑 ∧ ( 𝑢𝐵𝑣𝐵𝑤𝐵 ) ) → ( 𝑢 ( .r𝑈 ) ( 𝑣 ( +g𝑈 ) 𝑤 ) ) = ( ( 𝑢 ( .r𝑈 ) 𝑣 ) ( +g𝑈 ) ( 𝑢 ( .r𝑈 ) 𝑤 ) ) )
129 25 3 4 rngdir ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) )
130 47 51 54 57 129 syl13anc ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) )
131 130 fveq2d ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → ( 𝐹 ‘ ( ( 𝑥 + 𝑦 ) · 𝑧 ) ) = ( 𝐹 ‘ ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) )
132 99 caovclg ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑉 )
133 132 3adantr3 ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑉 )
134 5 7 1 2 8 4 18 imasmulval ( ( 𝜑 ∧ ( 𝑥 + 𝑦 ) ∈ 𝑉𝑧𝑉 ) → ( ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ( .r𝑈 ) ( 𝐹𝑧 ) ) = ( 𝐹 ‘ ( ( 𝑥 + 𝑦 ) · 𝑧 ) ) )
135 61 133 55 134 syl3anc ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → ( ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ( .r𝑈 ) ( 𝐹𝑧 ) ) = ( 𝐹 ‘ ( ( 𝑥 + 𝑦 ) · 𝑧 ) ) )
136 5 6 1 2 8 3 106 imasaddval ( ( 𝜑 ∧ ( 𝑥 · 𝑧 ) ∈ 𝑉 ∧ ( 𝑦 · 𝑧 ) ∈ 𝑉 ) → ( ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ( +g𝑈 ) ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) = ( 𝐹 ‘ ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) )
137 61 105 68 136 syl3anc ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → ( ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ( +g𝑈 ) ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) = ( 𝐹 ‘ ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) )
138 131 135 137 3eqtr4d ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → ( ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ( .r𝑈 ) ( 𝐹𝑧 ) ) = ( ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ( +g𝑈 ) ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) )
139 5 6 1 2 8 3 106 imasaddval ( ( 𝜑𝑥𝑉𝑦𝑉 ) → ( ( 𝐹𝑥 ) ( +g𝑈 ) ( 𝐹𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) )
140 139 3adant3r3 ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → ( ( 𝐹𝑥 ) ( +g𝑈 ) ( 𝐹𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) )
141 140 oveq1d ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → ( ( ( 𝐹𝑥 ) ( +g𝑈 ) ( 𝐹𝑦 ) ) ( .r𝑈 ) ( 𝐹𝑧 ) ) = ( ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ( .r𝑈 ) ( 𝐹𝑧 ) ) )
142 114 76 oveq12d ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → ( ( ( 𝐹𝑥 ) ( .r𝑈 ) ( 𝐹𝑧 ) ) ( +g𝑈 ) ( ( 𝐹𝑦 ) ( .r𝑈 ) ( 𝐹𝑧 ) ) ) = ( ( 𝐹 ‘ ( 𝑥 · 𝑧 ) ) ( +g𝑈 ) ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) )
143 138 141 142 3eqtr4d ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → ( ( ( 𝐹𝑥 ) ( +g𝑈 ) ( 𝐹𝑦 ) ) ( .r𝑈 ) ( 𝐹𝑧 ) ) = ( ( ( 𝐹𝑥 ) ( .r𝑈 ) ( 𝐹𝑧 ) ) ( +g𝑈 ) ( ( 𝐹𝑦 ) ( .r𝑈 ) ( 𝐹𝑧 ) ) ) )
144 79 80 oveq12d ( ( ( 𝐹𝑥 ) = 𝑢 ∧ ( 𝐹𝑦 ) = 𝑣 ∧ ( 𝐹𝑧 ) = 𝑤 ) → ( ( 𝐹𝑥 ) ( +g𝑈 ) ( 𝐹𝑦 ) ) = ( 𝑢 ( +g𝑈 ) 𝑣 ) )
145 144 82 oveq12d ( ( ( 𝐹𝑥 ) = 𝑢 ∧ ( 𝐹𝑦 ) = 𝑣 ∧ ( 𝐹𝑧 ) = 𝑤 ) → ( ( ( 𝐹𝑥 ) ( +g𝑈 ) ( 𝐹𝑦 ) ) ( .r𝑈 ) ( 𝐹𝑧 ) ) = ( ( 𝑢 ( +g𝑈 ) 𝑣 ) ( .r𝑈 ) 𝑤 ) )
146 119 84 oveq12d ( ( ( 𝐹𝑥 ) = 𝑢 ∧ ( 𝐹𝑦 ) = 𝑣 ∧ ( 𝐹𝑧 ) = 𝑤 ) → ( ( ( 𝐹𝑥 ) ( .r𝑈 ) ( 𝐹𝑧 ) ) ( +g𝑈 ) ( ( 𝐹𝑦 ) ( .r𝑈 ) ( 𝐹𝑧 ) ) ) = ( ( 𝑢 ( .r𝑈 ) 𝑤 ) ( +g𝑈 ) ( 𝑣 ( .r𝑈 ) 𝑤 ) ) )
147 145 146 eqeq12d ( ( ( 𝐹𝑥 ) = 𝑢 ∧ ( 𝐹𝑦 ) = 𝑣 ∧ ( 𝐹𝑧 ) = 𝑤 ) → ( ( ( ( 𝐹𝑥 ) ( +g𝑈 ) ( 𝐹𝑦 ) ) ( .r𝑈 ) ( 𝐹𝑧 ) ) = ( ( ( 𝐹𝑥 ) ( .r𝑈 ) ( 𝐹𝑧 ) ) ( +g𝑈 ) ( ( 𝐹𝑦 ) ( .r𝑈 ) ( 𝐹𝑧 ) ) ) ↔ ( ( 𝑢 ( +g𝑈 ) 𝑣 ) ( .r𝑈 ) 𝑤 ) = ( ( 𝑢 ( .r𝑈 ) 𝑤 ) ( +g𝑈 ) ( 𝑣 ( .r𝑈 ) 𝑤 ) ) ) )
148 143 147 syl5ibcom ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉𝑧𝑉 ) ) → ( ( ( 𝐹𝑥 ) = 𝑢 ∧ ( 𝐹𝑦 ) = 𝑣 ∧ ( 𝐹𝑧 ) = 𝑤 ) → ( ( 𝑢 ( +g𝑈 ) 𝑣 ) ( .r𝑈 ) 𝑤 ) = ( ( 𝑢 ( .r𝑈 ) 𝑤 ) ( +g𝑈 ) ( 𝑣 ( .r𝑈 ) 𝑤 ) ) ) )
149 148 3exp2 ( 𝜑 → ( 𝑥𝑉 → ( 𝑦𝑉 → ( 𝑧𝑉 → ( ( ( 𝐹𝑥 ) = 𝑢 ∧ ( 𝐹𝑦 ) = 𝑣 ∧ ( 𝐹𝑧 ) = 𝑤 ) → ( ( 𝑢 ( +g𝑈 ) 𝑣 ) ( .r𝑈 ) 𝑤 ) = ( ( 𝑢 ( .r𝑈 ) 𝑤 ) ( +g𝑈 ) ( 𝑣 ( .r𝑈 ) 𝑤 ) ) ) ) ) ) )
150 149 imp32 ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉 ) ) → ( 𝑧𝑉 → ( ( ( 𝐹𝑥 ) = 𝑢 ∧ ( 𝐹𝑦 ) = 𝑣 ∧ ( 𝐹𝑧 ) = 𝑤 ) → ( ( 𝑢 ( +g𝑈 ) 𝑣 ) ( .r𝑈 ) 𝑤 ) = ( ( 𝑢 ( .r𝑈 ) 𝑤 ) ( +g𝑈 ) ( 𝑣 ( .r𝑈 ) 𝑤 ) ) ) ) )
151 150 rexlimdv ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉 ) ) → ( ∃ 𝑧𝑉 ( ( 𝐹𝑥 ) = 𝑢 ∧ ( 𝐹𝑦 ) = 𝑣 ∧ ( 𝐹𝑧 ) = 𝑤 ) → ( ( 𝑢 ( +g𝑈 ) 𝑣 ) ( .r𝑈 ) 𝑤 ) = ( ( 𝑢 ( .r𝑈 ) 𝑤 ) ( +g𝑈 ) ( 𝑣 ( .r𝑈 ) 𝑤 ) ) ) )
152 151 rexlimdvva ( 𝜑 → ( ∃ 𝑥𝑉𝑦𝑉𝑧𝑉 ( ( 𝐹𝑥 ) = 𝑢 ∧ ( 𝐹𝑦 ) = 𝑣 ∧ ( 𝐹𝑧 ) = 𝑤 ) → ( ( 𝑢 ( +g𝑈 ) 𝑣 ) ( .r𝑈 ) 𝑤 ) = ( ( 𝑢 ( .r𝑈 ) 𝑤 ) ( +g𝑈 ) ( 𝑣 ( .r𝑈 ) 𝑤 ) ) ) )
153 46 152 sylbid ( 𝜑 → ( ( 𝑢𝐵𝑣𝐵𝑤𝐵 ) → ( ( 𝑢 ( +g𝑈 ) 𝑣 ) ( .r𝑈 ) 𝑤 ) = ( ( 𝑢 ( .r𝑈 ) 𝑤 ) ( +g𝑈 ) ( 𝑣 ( .r𝑈 ) 𝑤 ) ) ) )
154 153 imp ( ( 𝜑 ∧ ( 𝑢𝐵𝑣𝐵𝑤𝐵 ) ) → ( ( 𝑢 ( +g𝑈 ) 𝑣 ) ( .r𝑈 ) 𝑤 ) = ( ( 𝑢 ( .r𝑈 ) 𝑤 ) ( +g𝑈 ) ( 𝑣 ( .r𝑈 ) 𝑤 ) ) )
155 9 10 11 17 31 93 128 154 isrngd ( 𝜑𝑈 ∈ Rng )