Metamath Proof Explorer


Theorem imasrngf1

Description: The image of a non-unital ring under an injection is a non-unital ring ( imasmndf1 analog). (Contributed by AV, 22-Feb-2025)

Ref Expression
Hypotheses imasrngf1.u 𝑈 = ( 𝐹s 𝑅 )
imasrngf1.v 𝑉 = ( Base ‘ 𝑅 )
Assertion imasrngf1 ( ( 𝐹 : 𝑉1-1𝐵𝑅 ∈ Rng ) → 𝑈 ∈ Rng )

Proof

Step Hyp Ref Expression
1 imasrngf1.u 𝑈 = ( 𝐹s 𝑅 )
2 imasrngf1.v 𝑉 = ( Base ‘ 𝑅 )
3 1 a1i ( ( 𝐹 : 𝑉1-1𝐵𝑅 ∈ Rng ) → 𝑈 = ( 𝐹s 𝑅 ) )
4 2 a1i ( ( 𝐹 : 𝑉1-1𝐵𝑅 ∈ Rng ) → 𝑉 = ( Base ‘ 𝑅 ) )
5 eqid ( +g𝑅 ) = ( +g𝑅 )
6 eqid ( .r𝑅 ) = ( .r𝑅 )
7 f1f1orn ( 𝐹 : 𝑉1-1𝐵𝐹 : 𝑉1-1-onto→ ran 𝐹 )
8 7 adantr ( ( 𝐹 : 𝑉1-1𝐵𝑅 ∈ Rng ) → 𝐹 : 𝑉1-1-onto→ ran 𝐹 )
9 f1ofo ( 𝐹 : 𝑉1-1-onto→ ran 𝐹𝐹 : 𝑉onto→ ran 𝐹 )
10 8 9 syl ( ( 𝐹 : 𝑉1-1𝐵𝑅 ∈ Rng ) → 𝐹 : 𝑉onto→ ran 𝐹 )
11 8 f1ocpbl ( ( ( 𝐹 : 𝑉1-1𝐵𝑅 ∈ Rng ) ∧ ( 𝑎𝑉𝑏𝑉 ) ∧ ( 𝑝𝑉𝑞𝑉 ) ) → ( ( ( 𝐹𝑎 ) = ( 𝐹𝑝 ) ∧ ( 𝐹𝑏 ) = ( 𝐹𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g𝑅 ) 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 ( +g𝑅 ) 𝑞 ) ) ) )
12 8 f1ocpbl ( ( ( 𝐹 : 𝑉1-1𝐵𝑅 ∈ Rng ) ∧ ( 𝑎𝑉𝑏𝑉 ) ∧ ( 𝑝𝑉𝑞𝑉 ) ) → ( ( ( 𝐹𝑎 ) = ( 𝐹𝑝 ) ∧ ( 𝐹𝑏 ) = ( 𝐹𝑞 ) ) → ( 𝐹 ‘ ( 𝑎 ( .r𝑅 ) 𝑏 ) ) = ( 𝐹 ‘ ( 𝑝 ( .r𝑅 ) 𝑞 ) ) ) )
13 simpr ( ( 𝐹 : 𝑉1-1𝐵𝑅 ∈ Rng ) → 𝑅 ∈ Rng )
14 3 4 5 6 10 11 12 13 imasrng ( ( 𝐹 : 𝑉1-1𝐵𝑅 ∈ Rng ) → 𝑈 ∈ Rng )