Metamath Proof Explorer


Theorem imass1

Description: Subset theorem for image. (Contributed by NM, 16-Mar-2004)

Ref Expression
Assertion imass1 ( 𝐴𝐵 → ( 𝐴𝐶 ) ⊆ ( 𝐵𝐶 ) )

Proof

Step Hyp Ref Expression
1 ssres ( 𝐴𝐵 → ( 𝐴𝐶 ) ⊆ ( 𝐵𝐶 ) )
2 rnss ( ( 𝐴𝐶 ) ⊆ ( 𝐵𝐶 ) → ran ( 𝐴𝐶 ) ⊆ ran ( 𝐵𝐶 ) )
3 1 2 syl ( 𝐴𝐵 → ran ( 𝐴𝐶 ) ⊆ ran ( 𝐵𝐶 ) )
4 df-ima ( 𝐴𝐶 ) = ran ( 𝐴𝐶 )
5 df-ima ( 𝐵𝐶 ) = ran ( 𝐵𝐶 )
6 3 4 5 3sstr4g ( 𝐴𝐵 → ( 𝐴𝐶 ) ⊆ ( 𝐵𝐶 ) )